Skip to main content

Glycopeptides and Bacterial Cell Walls

  • Chapter
  • First Online:
Antimicrobial Compounds

Abstract

The discovery of antibiotics prompted a new era in the treatment of microbial infections. However, from the very beginning of antibiotic utilization, bacterial resistance to these compounds also emerged. Thus, the resistance to penicillin was reported only 1 year after its adoption in clinic and the same process has been reported later with other important drugs. In contrast, glycopeptide antibiotics have been an intriguing exception during a long period of time, which led to their adoption as drugs of last resort treatments. Enterococci strains presented resistance to vancomycin, which is the most important member of this class of antibiotics, in 1987, many years after its introduction in clinic in 1958. Later, this resistance was also spread to important pathogens like ‘methicillin-resistant Staphylococcus aureus’ (MRSA). In this chapter, we will focus on the origin of glycopeptides in the context of the antibiotic discovery, the structure, biochemistry, regulation, and action mechanism of these compounds, as well as the resistance appearing especially in the producer and nonproducer Streptomyces spp. Besides, a special attention is paid to the cell wall modifications, which leads to the glycopeptide resistance. New trends in semisynthetic glycopeptides production are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadía-Patiño L, Christiansen K, Bell J et al (2004) VanE-type vancomycin-resistant Enterococcus faecalis clinical isolates from Australia. Antimicrob Agents Chemother 48:4882–4885. doi:10.1128/AAC.48.12.4882-4885.2004

    PubMed  Google Scholar 

  • Allen NE, LeTourneau DL, Hobbs JN, Thompson RC (2002) Hexapeptide derivatives of glycopeptide antibiotics: tools for mechanism of action studies. Antimicrob Agents Chemother 46:2344–2348

    PubMed  CAS  Google Scholar 

  • Allen NE, Nicas TI (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532

    PubMed  CAS  Google Scholar 

  • Alzolibani AA, Al Robaee AA, Al Shobaili HA et al (2012) Documentation of vancomycin-resistant Staphylococcus aureus (VRSA) among children with atopic dermatitis in the Qassim region, Saudi Arabia. Acta dermatovenerologica Alpina, Panonica, et Adriatica 21:51–53

    PubMed  Google Scholar 

  • Arhin FF, Belley A, Far AR, et al. (2012) Glycopeptides and Lipoglycopeptides. In: Dougherty T, Pucci M (eds)Antibiotic discovery and development. Springer US, New York. pp 301–346. doi: 10.1007/978-1-4614-1400-1_9

  • Arthur M, Depardieu F, Courvalin P (1999) Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145(Pt 8):1849–58

    Google Scholar 

  • Arthur M, Depardieu F, Molinas C et al (1995) The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 154:87–92

    PubMed  CAS  Google Scholar 

  • Arthur M, Molinas C, Bugg TD et al (1992) Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob Agents Chemother 36:867–869

    PubMed  CAS  Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407. doi:10.1016/0966-842X(96)10063-9

    PubMed  CAS  Google Scholar 

  • Van Bambeke F (2004) Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol 4:471–478. doi:10.1016/j.coph.2004.04.006

    PubMed  Google Scholar 

  • Banik JJ, Brady SF (2008) Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proc Natl Acad Sci USA 105:17273–17277. doi:10.1073/pnas.0807564105

    PubMed  CAS  Google Scholar 

  • Barna JC, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357. doi:10.1146/annurev.mi.38.100184.002011

    PubMed  CAS  Google Scholar 

  • Barreiro C, Martín JF, García-Estrada C (2012) Proteomics shows new faces for the old Penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012:1–15. doi:10.1155/2012/105109

    Google Scholar 

  • Beauregard DA, Williams DH, Gwynn MN, Knowles DJ (1995) Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39:781–785

    PubMed  CAS  Google Scholar 

  • Becker K, Friedrich AW, Lubritz G et al (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41:1434–1439

    PubMed  CAS  Google Scholar 

  • Bertrand X, Hocquet D, Thouverez M et al (2003) Characterisation of methicillin-resistant Staphylococcus aureus with reduced susceptibility to teicoplanin in Eastern France. Eur J Clin Microbiol Infect Dis Off Publ Eur Soci Clin Microbiol 22:504–506. doi:10.1007/s10096-003-0966-7

    CAS  Google Scholar 

  • Biedenbach DJ, Bell JM, Sader HS et al (2009) Activities of dalbavancin against a worldwide collection of 81,673 gram-positive bacterial isolates. Antimicrob Agents Chemother 53:1260–1263. doi:10.1128/AAC.01453-08

    PubMed  CAS  Google Scholar 

  • Billot-Klein D, Blanot D, Gutmann L, Van Heijenoort J (1994a) Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-d-alanine and N-acetyl-D-alanyl-d-serine. Biochem J 304(Pt 3):1021–2

    Google Scholar 

  • Billot-Klein D, Gutmann L, Sablé S et al (1994b) Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol 176:2398–2405

    PubMed  CAS  Google Scholar 

  • Bisicchia P, Bui NK, Aldridge C et al (2011) Acquisition of VanB-type vancomycin resistance by Bacillus subtilis: the impact on gene expression, cell wall composition and morphology. Mol Microbiol 81:157–178. doi:10.1111/j.1365-2958.2011.07684.x

    PubMed  CAS  Google Scholar 

  • Boyd DA, Du T, Hizon R et al (2006) VanG-type vancomycin-resistant Enterococcus faecalis strains isolated in Canada. Antimicrob Agents Chemother 50:2217–2221. doi:10.1128/AAC.01541-05

    PubMed  CAS  Google Scholar 

  • Boyd DA, Willey BM, Fawcett D et al (2008) Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother 52:2667–2672. doi:10.1128/AAC.01516-07

    PubMed  CAS  Google Scholar 

  • Bugg TD, Dutka-Malen S, Arthur M et al (1991) Identification of vancomycin resistance protein VanA as a d-alanine:d-alanine ligase of altered substrate specificity. Biochemistry 30:2017–2021

    PubMed  CAS  Google Scholar 

  • Byarugaba DK (2010) Mechanisms of Antimicrobial Resistance. In: Sosa A de J, Byarugaba DK, Amábile-Cuevas CF, et al (eds) Antimicrobial Resistance in Developing Countries. Springer New York. New York, NY, pp 15–26. doi: 10.1007/978-0-387-89370-9_2

  • Carias LL, Rudin SD, Donskey CJ, Rice LB (1998) Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 180:4426–4434

    PubMed  CAS  Google Scholar 

  • Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641. doi:10.1038/nrmicro2200

    PubMed  CAS  Google Scholar 

  • Chang S, Sievert DM, Hageman JC et al (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347. doi:10.1056/NEJMoa025025

    PubMed  Google Scholar 

  • Chau F, Lefort A, Benadda S et al (2011) Flow cytometry as a tool to determine the effects of cell wall-active antibiotics on vancomycin-susceptible and -resistant Enterococcus faecalis strains. Antimicrob Agents Chemother 55:395–398. doi:10.1128/AAC.00970-10

    PubMed  CAS  Google Scholar 

  • Chiu HT, Hubbard BK, Shah AN et al (2001) Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci USA 98:8548–8553. doi:10.1073/pnas.151246498

    PubMed  CAS  Google Scholar 

  • Courvalin P (2005) Antimicrobial Drug Resistance: “Prediction Is Very Difficult, Especially about the Future”. Emerg Infect Dis 11:1503–1506

    CAS  Google Scholar 

  • Cundliffe E, Demain AL (2010) Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 37:643–672. doi:10.1007/s10295-010-0721-x

    PubMed  CAS  Google Scholar 

  • D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461. doi:10.1038/nature10388

    PubMed  Google Scholar 

  • Dahl KH, Simonsen GS, Olsvik O, Sundsfjord A (1999) Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother 43:1105–1110

    PubMed  CAS  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16. doi:10.1038/ja.2008.16

    PubMed  CAS  Google Scholar 

  • Depardieu F, Bonora MG, Reynolds PE, Courvalin P (2003a) The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol 50:931–948

    PubMed  CAS  Google Scholar 

  • Depardieu F, Reynolds PE, Courvalin P (2003b) VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother 47:7–18

    PubMed  CAS  Google Scholar 

  • Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P ( 2007) Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20(1):79–114

    Google Scholar 

  • Depardieu F, Foucault M-L, Bell J et al (2009) New combinations of mutations in VanD-Type vancomycin-resistant Enterococcus faecium, Enterococcus faecalis, and Enterococcus avium strains. Antimicrob Agents Chemother 53:1952–1963. doi:10.1128/AAC.01348-08

    PubMed  CAS  Google Scholar 

  • Domingo M-C, Huletsky A, Giroux R et al (2007) vanD and vanG-like gene clusters in a Ruminococcus species isolated from human bowel flora. Antimicrob Agents Chemother 51:4111–4117. doi:10.1128/AAC.00584-07

    PubMed  CAS  Google Scholar 

  • Doyle ME (2001) Alternatives to antibiotic use for growth promotion in animal husbandry. FRI briefings. University of Wisconsin-Madison, Madison

    Google Scholar 

  • Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:1434

    PubMed  CAS  Google Scholar 

  • ECDC/EMEA (2009) The bacterial challenge: time to react. 54. doi: 10.2900/2518

  • Eisner A, Gorkiewicz G, Feierl G et al (2005) Identification of glycopeptide-resistant enterococci by VITEK 2 system and conventional and real-time polymerase chain reaction. Diagn Microbiol Infect Dis 53:17–21. doi:10.1016/j.diagmicrobio.2005.04.001

    PubMed  CAS  Google Scholar 

  • Evers S, Courvalin P (1996) Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 178:1302–1309

    PubMed  CAS  Google Scholar 

  • Falcão-e-Cunha L, C-S L, Maertens L et al (2007) Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Sci 15:127–140

    Google Scholar 

  • Fines M, Perichon B, Reynolds P et al (1999) VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 43:2161–2164

    PubMed  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Organ 79:780–790

    Google Scholar 

  • Florey HW, Chain E, Heatley NG et al (eds) (1949) Antibiotics from bacteria. The antibiotics. Oxford University Press, London 1:417–565

    Google Scholar 

  • Fontana R, Ligozzi M, Pedrotti C et al (1997) Vancomycin-resistant Bacillus circulans carrying the vanA gene responsible for vancomycin resistance in enterococci. Eur J Clin Microbiol Infect Dis Off Publ Eur Soci Clin Microbiol 16:473–474

    CAS  Google Scholar 

  • Fraimow H, Knob C, Herrero IA, Patel R (2005) Putative VanRS-like two-component regulatory system associated with the inducible glycopeptide resistance cluster of Paenibacillus popilliae. Antimicrob Agents Chemother 49:2625–2633. doi:10.1128/AAC.49.7.2625-2633.2005

    PubMed  CAS  Google Scholar 

  • Garnier F, Taourit S, Glaser P et al (2000) Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146(Pt 6):1481–9

    Google Scholar 

  • Geiman DE, Raghunand TR, Agarwal N, Bishai WR (2006) Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841. doi:10.1128/AAC.00295-06

    PubMed  CAS  Google Scholar 

  • Gemmell CG, Edwards DI, Fraise AP et al (2006) Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother 57:589–608. doi:10.1093/jac/dkl017

    PubMed  CAS  Google Scholar 

  • Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9:675–676. doi:10.1038/nrd3267

    PubMed  CAS  Google Scholar 

  • Handwerger S, Discotto L, Thanassi J, Pucci MJ (1992) Insertional inactivation of a gene which controls expression of vancomycin resistance on plasmid pHKK100. FEMS Microbiol Lett 71:11–14

    PubMed  CAS  Google Scholar 

  • Handwerger S, Pucci MJ, Kolokathis A (1990) Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother 34:358–360

    PubMed  CAS  Google Scholar 

  • Handwerger S, Pucci MJ, Volk KJ et al (1994) Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol 176:260–264

    PubMed  CAS  Google Scholar 

  • Handwerger S, Skoble J (1995) Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 39:2446–2453

    PubMed  CAS  Google Scholar 

  • Harris CM, Kopecka H, Harris TM (1985) The stabilization of vancomycin by peptidoglycan analogs. J Antibiot 38:51–57

    PubMed  CAS  Google Scholar 

  • Hayden MK, Trenholme GM, Schultz JE, Sahm DF (1993) In vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J Infect Dis 167:1224–1227

    PubMed  CAS  Google Scholar 

  • Hesketh A, Hill C, Mokhtar J et al (2011) Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics 12:226. doi:10.1186/1471-2164-12-226

    PubMed  CAS  Google Scholar 

  • Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    PubMed  CAS  Google Scholar 

  • Hong H-J, Hutchings MI, Buttner MJ (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213

    PubMed  CAS  Google Scholar 

  • Hong H-J, Hutchings MI, Hill LM, Buttner MJ (2005) The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061. doi:10.1074/jbc.M413801200

    PubMed  CAS  Google Scholar 

  • Hong H-J, Hutchings MI, Neu JM et al (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52:1107–1121. doi:10.1111/j.1365-2958.2004.04032.x

    PubMed  CAS  Google Scholar 

  • Hong H-J, Paget MSB, Buttner MJ (2002) A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 44:1199–1211

    PubMed  CAS  Google Scholar 

  • Howden BP, Stinear TP, Allen DL et al (2008) Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob Agents Chemother 52:3755–3762. doi:10.1128/AAC.01613-07

    PubMed  CAS  Google Scholar 

  • Hutchings MI, Hong H-J, Buttner MJ (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59:923–935. doi:10.1111/j.1365-2958.2005.04953.x

    PubMed  CAS  Google Scholar 

  • James RC, Pierce JG, Okano A et al (2012) Redesign of glycopeptide antibiotics: back to the future. ACS Chem Biol 7:797–804. doi:10.1021/cb300007j

    PubMed  CAS  Google Scholar 

  • Jansen A, Türck M, Szekat C et al (2007) Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int J Med Microbiol IJMM 297:205–215. doi:10.1016/j.ijmm.2007.02.002

    CAS  Google Scholar 

  • Jovetic S, Zhu Y, Marcone GL et al (2010) β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28:596–604. doi:10.1016/j.tibtech.2010.09.004

    PubMed  CAS  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448. doi:10.1021/cr030103a

    PubMed  CAS  Google Scholar 

  • Kalan L, Perry J, Koteva K et al (2013) Glycopeptide sulfation evades resistance. J Bacteriol 195:167–171. doi:10.1128/JB.01617-12

    PubMed  CAS  Google Scholar 

  • Kato Y, Suzuki T, Ida T, Maebashi K (2010) Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J Antimicrob Chemother 65:37–45. doi:10.1093/jac/dkp394

    PubMed  CAS  Google Scholar 

  • Kong K-F, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS Acta Pathologica, Microbiologica, Et Immunologica Scandinavica 118:1–36. doi:10.1111/j.1600-0463.2009.02563.x

    PubMed  CAS  Google Scholar 

  • Koteva K, Hong H-J, Wang XD et al (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6:327–329. doi:10.1038/nchembio.350

    PubMed  CAS  Google Scholar 

  • Larkin M (2003) Antibacterial resistance deemed a public-health crisis. Lancet Infect Dis 3:322

    PubMed  Google Scholar 

  • Leadbetter MR, Adams SM, Bazzini B et al (2004) Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot 57:326–336

    PubMed  CAS  Google Scholar 

  • Lebreton F, Depardieu F, Bourdon N et al (2011) D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612. doi:10.1128/AAC.00714-11

    PubMed  CAS  Google Scholar 

  • Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161. doi:10.1056/NEJM198807213190307

    PubMed  CAS  Google Scholar 

  • Leclercq R, Derlot E, Weber M et al (1989) Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 33:10–15

    PubMed  CAS  Google Scholar 

  • Levine DP (2006) Vancomycin: a history. Clin Infect Dis Off Publ Infect Dis Soc Am 42(Suppl 1):S5–S12. doi:10.1086/491709

    CAS  Google Scholar 

  • Li T-L, Huang F, Haydock SF et al (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11:107–119. doi:10.1016/j.chembiol.2004.01.001

    PubMed  CAS  Google Scholar 

  • Li T-L, Liu Y-C, Lyu S-Y (2012) Combining biocatalysis and chemoselective chemistries for glycopeptide antibiotics modification. Curr Opin Chem Biol 16:170–178. doi:10.1016/j.cbpa.2012.01.017

    PubMed  CAS  Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(Suppl 1):i29–i36. doi:10.1093/jac/dkp255

    PubMed  CAS  Google Scholar 

  • Long DD, Aggen JB, Chinn J et al (2008) Exploring the positional attachment of glycopeptide/beta-lactam heterodimers. J Antibiot 61:603–614. doi:10.1038/ja.2008.80

    PubMed  CAS  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. doi:10.1056/NEJM199808203390806

    PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Sthal D, Clark DP (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings. San Francisco, US

    Google Scholar 

  • Malabarba A, Ciabatti R, Gerli E et al (1997) Substitution of amino acids 1 and 3 in teicoplanin aglycon: synthesis and antibacterial activity of three first non-natural dalbaheptides. J Antibiot 50:70–81

    PubMed  CAS  Google Scholar 

  • Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55(Suppl 2):ii15–20. doi: 10.1093/jac/dki005

    Google Scholar 

  • McCallum N, Spehar G, Bischoff M, Berger-Bächi B (2006) Strain dependence of the cell wall-damage induced stimulon in Staphylococcus aureus. Biochim Biophys Acta 1760:1475–1481. doi:10.1016/j.bbagen.2006.06.008

    PubMed  CAS  Google Scholar 

  • McCormick M, McGuire J, Pittenger G et al (1956) Vancomycin, a new antibiotic. I. Chem Biologic Prop. Antibio Annu 3:606–611

    CAS  Google Scholar 

  • McKessar SJ, Berry AM, Bell JM et al (2000) Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother 44:3224–3228

    PubMed  CAS  Google Scholar 

  • Méndez-Alvarez S, Pérez-Hernández X, Claverie-Martín F (2000) Glycopeptide resistance in enterococci. Int Microbiol Off J Span Soc Microbiolo 3:71–80

    Google Scholar 

  • Neu JM, Wright GD (2001) Inhibition of sporulation, glycopeptide antibiotic production and resistance in Streptomyces toyocaensis NRRL 15009 by protein kinase inhibitors. FEMS Microbiol Lett 199:15–20

    PubMed  CAS  Google Scholar 

  • Nicas TI, Mullen DL, Flokowitsch JE et al (1996) Semisynthetic glycopeptide antibiotics derived from LY264826 active against vancomycin-resistant enterococci. Antimicrob Agents Chemother 40:2194–2199

    PubMed  CAS  Google Scholar 

  • Nicolaou K, Boddy C, Bräse S, Winssinger N (1999) Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. Angew Chem Int Ed Engl 38:2096–2152

    PubMed  Google Scholar 

  • Novotna G, Hill C, Vincent K et al (2012) A novel membrane protein, VanJ, conferring resistance to teicoplanin. Antimicrob Agents Chemother 56:1784–1796. doi:10.1128/AAC.05869-11

    PubMed  CAS  Google Scholar 

  • Parker M, Jevons M (1964) A survey of methicillin resistance in Staphylococcus aureus. Postgrad Med J 40(SUPPL):170–178

    PubMed  Google Scholar 

  • Patel R, Piper K, Cockerill FR et al (2000) The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother 44:705–709

    PubMed  CAS  Google Scholar 

  • Patel R, Uhl JR, Cockerill FR (2001) Multiplex Polymerase Chain Reaction Detection of vanA, vanB, vanC-1, and vanC-2/3 Genes in Enterococci. In: Gillespie S (ed) Antibiotic resistance: methods and protcols. Humana Press, New York, pp 3–11

    Google Scholar 

  • Pelzer S, Süssmuth R, Heckmann D et al (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    PubMed  CAS  Google Scholar 

  • Périchon B, Courvalin P (2012) Glycopeptide resistance. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development, 1st edn. Springer US, New York. pp 515–542. doi: 10.1007/978-1-4614-1400-1_15.

  • Plowman R, Graves N, Griffin MA et al (2001) The rate and cost of hospital-acquired infections occurring in patients admitted to selected specialties of a district general hospital in England and the national burden imposed. J Hosp Infect 47:198–209. doi:10.1053/jhin.2000.0881

    PubMed  CAS  Google Scholar 

  • Pootoolal J, Thomas MG, Marshall CG, et al. (2002) Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Nat Acad Sci USA 99:8962–7. doi: 10.1073/pnas.102285099

    Google Scholar 

  • Provvedi R, Boldrin F, Falciani F, et al. (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 155:1093–102. doi: 10.1099/mic.0.024802-0

    Google Scholar 

  • Quintiliani R, Courvalin P (1994) Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol Lett 119:359–363

    PubMed  CAS  Google Scholar 

  • Raad I, Darouiche R, Vazquez J et al (2005) Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis Off Publ Infect Dis Soci Am 40:374–380. doi:10.1086/427283

    CAS  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis Off Publ Eur Soci Clin Microbiol 8:943–950

    CAS  Google Scholar 

  • Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-d-serine. Antimicrob Agents Chemother 49:21–25. doi:10.1128/AAC.49.1.21-25.2005

    PubMed  CAS  Google Scholar 

  • Reynolds PE, Snaith HA, Maguire AJ, et al. (1994) Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochemi J 301(Pt 1):5–8

    Google Scholar 

  • Rice LB, Carias LL, Donskey CL, Rudin SD (1998) Transferable, plasmid-mediated vanB-type glycopeptide resistance in Enterococcus faecium. Antimicrob Agents Chemother 42:963–964

    PubMed  CAS  Google Scholar 

  • Santos-Beneit F, Martín J (2013) Vancomycin resistance in Streptomyces coelicolor is phosphate-dependent but is not mediated by the PhoP regulator. J Global Antimicrob Resist 1:109–113.

    Google Scholar 

  • Schwalbe RS, Stapleton JT, Gilligan PH (1987) Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med 316:927–931. doi:10.1056/NEJM198704093161507

    PubMed  CAS  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786. doi:10.1038/ng1830

    PubMed  Google Scholar 

  • Seltzer E, Dorr MB, Goldstein BP et al (2003) Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin Infect Dis Off Publ Infect Dis Soc Am 37:1298–1303. doi:10.1086/379015

    CAS  Google Scholar 

  • Sosio M, Donadio S (2006) Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. J Ind Microbiol Biotechnol 33:569–576. doi:10.1007/s10295-006-0124-1

    PubMed  CAS  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, et al. (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    Google Scholar 

  • Sosio M, Stinchi S, Beltrametti F et al (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. Chem Biol 10:541–549

    PubMed  CAS  Google Scholar 

  • Stegmann E, Frasch H-J, Wohlleben W (2010) Glycopeptide biosynthesis in the context of basic cellular functions. Curr Opin Microbiol 13:595–602. doi:10.1016/j.mib.2010.08.011

    PubMed  CAS  Google Scholar 

  • Sujatha S, Praharaj I (2012) Glycopeptide resistance in gram-positive cocci: a review. Interdisc Perspect Infect Dis 2012:781679. doi:10.1155/2012/781679

    CAS  Google Scholar 

  • Tan AL, Loke P, Sim T-S (2002) Molecular cloning and functional characterisation of VanX, a D-alanyl-d-alanine dipeptidase from Streptomyces coelicolor A3(2). Res Microbiol 153:27–32

    PubMed  CAS  Google Scholar 

  • Tauch A, Kaiser O, Hain T et al (2005) Complete Genome Sequence and Analysis of the Multiresistant Nosocomial Pathogen Corynebacterium jeikeium K411, a Lipid-Requiring Bacterium of the Human Skin. Flora 187:4671–4682. doi:10.1128/JB.187.13.4671

    CAS  Google Scholar 

  • Tenover FC, Biddle JW, Lancaster MV (2001) Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg Infect Dis 7:327–332. doi:10.3201/eid0702.700327

    PubMed  CAS  Google Scholar 

  • Van Wageningen AM, Kirkpatrick PN, Williams DH et al (1998) Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5:155–162

    PubMed  Google Scholar 

  • Walsh TR, Howe RA (2002) The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annu Rev Microbiol 56:657–675. doi:10.1146/annurev.micro.56.012302.160806

    PubMed  CAS  Google Scholar 

  • Weigel LM, Clewell DB, Gill SR, et al. (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–71. doi: 10.1126/science.1090956

    Google Scholar 

  • Wenzel RP (1982) The emergence of methicillin-resistant Staphylococcus aureus. Ann Intern Med 97:440–442

    PubMed  CAS  Google Scholar 

  • Williams DH, Bardsley B (1999) The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. Angew Chem Int Ed 38:1172–1193. doi:10.1002/(SICI)1521-3773(19990503)38:9<1172:AID-ANIE1172>3.0.CO;2-C

    Google Scholar 

  • Woodford N (1998) Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol 47:849–862

    PubMed  CAS  Google Scholar 

  • Woodford N, Johnson A (1994) Glycopeptide resistance in gram-positive bacteria: from black and white to shades of grey. J Med Microbiol 40:375–378

    PubMed  CAS  Google Scholar 

  • World Health Organization (2012) The evolving threat of antimicrobial resistance options for action, pp 1–120

    Google Scholar 

  • Wright G (2003) Mechanisms of resistance to antibiotics. Curr Opin Chem Biol 7:563–569. doi:10.1016/j.cbpa.2003.08.004

    PubMed  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186. doi:10.1038/nrmicro1614

    PubMed  CAS  Google Scholar 

  • Xu X, Lin D, Yan G et al (2010) vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 54:4643–4647. doi:10.1128/AAC.01710-09

    PubMed  CAS  Google Scholar 

  • Zapun A, Noirclerc-Savoye M, Helassa N, Vernet T (2012) Peptidoglycan assembly machines: the biochemical evidence. Microbial Drug Resist 18:256–60. doi: 10.1089/mdr.2011.0236

    Google Scholar 

  • Zhu W, Murray PR, Huskins WC et al (2010) Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:4314–4320. doi:10.1128/AAC.00185-10

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santos-Beneit, F., Martín, J.F., Barreiro, C. (2014). Glycopeptides and Bacterial Cell Walls. In: Villa, T., Veiga-Crespo, P. (eds) Antimicrobial Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40444-3_11

Download citation

Publish with us

Policies and ethics