Skip to main content

Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining

  • Chapter
  • First Online:
Antimicrobial Compounds

Abstract

Most bioactive natural products currently known are synthesized by members of the Actinomycetales order. The development of genetic engineering provides novel genetic tools for the modification of known antibiotics and other bioactive compounds to generate derivatives with improved therapeutic properties. This new technology, named combinatorial biosynthesis, is able of introducing structural modifications in bioactive compounds not easily accessible by chemical means. Furthermore, progress in genome sequencing in this group of microorganisms shows that actinomycetes have a greater potential of synthesizing bioactive compounds than was anticipated. Each genome sequenced shows the presence of 18–37 gene clusters potentially directing the biosynthesis of bioactive compounds that have not been previously identified. Novel strategies are being developed to activate these cryptic or silent gene clusters in these microorganisms, allowing the identification of novel potentially bioactive compounds. This chapter will revise the state of the art in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baig I, Pérez M, Braña AF et al (2008) Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity. J Nat Prod 71:199–207

    PubMed  CAS  Google Scholar 

  • Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    PubMed  CAS  Google Scholar 

  • Baquero F, Coque TM, de la Cruz F (2011) Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 55:3649–3660

    PubMed  CAS  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    PubMed  Google Scholar 

  • Blodgett JA, Oh DC, Cao S et al (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci USA 107:11692–11697

    PubMed  CAS  Google Scholar 

  • Brady SF, Simmons L, Kim JH et al (2009) Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 26:1488–1503

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    PubMed  CAS  Google Scholar 

  • Brautaset T, Bruheim P, Sletta H et al (2002) Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysC polyketide synthase gene in S. noursei ATCC 11455. Chem Biol 9:367–373

    PubMed  CAS  Google Scholar 

  • Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot 64:413–425

    PubMed  CAS  Google Scholar 

  • Carlet J, Jarlier V, Harbarth S et al (2012) Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control 1:11

    PubMed  Google Scholar 

  • Carlson JC, Li S, Gunatilleke SS et al (2011) Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem 3:628–633

    PubMed  CAS  Google Scholar 

  • Chen LF, Kaye D (2011) Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Med Clin North Am 95:819–842

    PubMed  CAS  Google Scholar 

  • Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of post translationally modified peptides. Proc Natl Acad Sci USA 107:16297–16302

    PubMed  CAS  Google Scholar 

  • Craney A, Ozimok C, Pimentel-Elardo SM et al (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027

    PubMed  CAS  Google Scholar 

  • Cunha BA (2006) New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited. Med Clin North Am 90:1089–1107

    PubMed  CAS  Google Scholar 

  • Daum M, Herrmann S, Wilkinson B et al (2009) Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 13:180–188

    PubMed  CAS  Google Scholar 

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10

    PubMed  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    PubMed  CAS  Google Scholar 

  • D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    PubMed  CAS  Google Scholar 

  • Dhillon N, Hale RS, Cortés J et al (1989) Molecular characterization of a gene from Saccharopolyspora erythraea (Streptomyces erythraeus) which is involved in erythromycin biosynthesis. Mol Microbiol 3:1405–1414

    PubMed  CAS  Google Scholar 

  • Doekel S, Coëffet-Le Gal MF, Gu JQ et al (2008) Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 154:2872–2880

    PubMed  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    PubMed  CAS  Google Scholar 

  • Donadio S, Maffioli S, Monciardini P et al (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430

    PubMed  CAS  Google Scholar 

  • Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718–9726

    PubMed  CAS  Google Scholar 

  • Fedorova ND, Moktali V, Medema MH (2012) Bioinformatics approaches and software for detection of secondary metabolic gene clusters. Methods Mol Biol 944:23–45

    PubMed  CAS  Google Scholar 

  • Fernandes P (2006) Antibacterial discovery and development—the failure of success? Nat Biotechnol 24:1497–1503

    PubMed  CAS  Google Scholar 

  • Fernández E, Weissbach U, Sánchez Reillo C et al (1998) Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937

    PubMed  Google Scholar 

  • Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    PubMed  CAS  Google Scholar 

  • Ghosh P, Bagchi MC (2011) Anti-tubercular drug designing by structure based screening of combinatorial libraries. J Mol Model 17:1607–1620

    PubMed  CAS  Google Scholar 

  • Gómez C, Horna DH, Olano C et al (2011) Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus. J Bacteriol 193:4214–4223

    PubMed  Google Scholar 

  • Gómez C, Olano C, Méndez C et al (2012a) Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology 158:2504–2514

    PubMed  Google Scholar 

  • Gómez C, Olano C, Palomino-Schätzlein M et al (2012b) Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J Antibiot 65:341–348

    PubMed  Google Scholar 

  • Gottelt M, Kol S, Gomez-Escribano JP et al (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353

    PubMed  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    PubMed  CAS  Google Scholar 

  • Han AR, Park JW, Lee MK et al (2011) Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol 77:4912–4923

    PubMed  CAS  Google Scholar 

  • Harvey CJ, Puglisi JD, Pande VS et al (2012) Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket. J Am Chem Soc 134:12259–12265

    PubMed  CAS  Google Scholar 

  • Heide L, Gust B, Anderle C et al (2008) Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics. Curr Top Med Chem 8:667–679

    PubMed  CAS  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Edit 48:4688–4716

    CAS  Google Scholar 

  • Horna DH, Gómez C, Olano C et al (2011) Biosynthesis of the RNA polymerase inhibitor streptolydigin in Streptomyces lydicus: tailoring modification of 3-methyl-aspartate. J Bacteriol 193:2647–2651

    PubMed  CAS  Google Scholar 

  • Hu GP, Yuan J, Sun L et al (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs 9:514–525

    PubMed  Google Scholar 

  • Hutchings KM, Tran TP, Ellsworth EL et al (2008) Synthesis and antibacterial activity of the C-7 side chain of 3-aminoquinazolinediones. Bioorg Med Chem Lett 18:5087–5090

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482

    PubMed  CAS  Google Scholar 

  • Jeya M, Moon HJ, Lee KM et al (2011) Glycopeptide antibiotics and their novel semi-synthetic derivatives. Curr Pharm Biotechnol 12:1194–1204

    PubMed  CAS  Google Scholar 

  • Kalaitzis JA, Lauro FM, Neilan BA (2009) Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 26:1447–1465

    PubMed  CAS  Google Scholar 

  • Kelly WL, Pan L, Li C (2009) Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J Am Chem Soc 131:4327–4334

    PubMed  CAS  Google Scholar 

  • Koglin A, Walsh CT (2009) Structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 26:987–1000

    PubMed  CAS  Google Scholar 

  • Kwon SJ, Mora-Pale M, Lee MY et al (2012) Expanding nature’s small molecule diversity via in vitro biosynthetic pathway engineering. Curr Opin Chem Biol 16:186–195

    PubMed  CAS  Google Scholar 

  • Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10:631–640

    PubMed  CAS  Google Scholar 

  • Laureti L, Song L, Huang S et al (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263

    PubMed  CAS  Google Scholar 

  • Lazos O, Tosin M, Slusarczyk AL et al (2010) Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem Biol 17:160–173

    PubMed  CAS  Google Scholar 

  • Lin X, Hopson R, Cane DE (2006) Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J Am Chem Soc 128:6022–6023

    PubMed  CAS  Google Scholar 

  • Liu WT, Kersten RD, Yang YL et al (2011) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 133:18010–18913

    PubMed  CAS  Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZ et al (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    PubMed  CAS  Google Scholar 

  • Lombó F, Gibson M, Greenwell L et al (2004) Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chem Biol 11:1709–1718

    PubMed  Google Scholar 

  • Lombó F, Abdelfattah MS, Braña AF et al (2009) Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of derivatives with increased antitumor activity. ChemBioChem 10:296–303

    PubMed  Google Scholar 

  • Long TE (2003) Recent progress toward the clinical development of new anti-MRSA antibiotics. IDrugs 6:351–359

    PubMed  CAS  Google Scholar 

  • Luzhetskyy A, Méndez C, Salas JA et al (2008) Glycosyltransferases, important tools for drug design. Curr Top Med Chem 8:680–709

    PubMed  CAS  Google Scholar 

  • Marsden AF, Wilkinson B, Cortés J et al (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279:199–202

    PubMed  CAS  Google Scholar 

  • McDaniel R, Thamchaipenet A, Gustafsson C et al (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci USA 96:1846–1851

    PubMed  CAS  Google Scholar 

  • Méndez C, Luzhetskyy A, Bechthold A et al (2008) Deoxysugars in bioactive natural products: development of novel derivatives by altering the sugar pattern. Curr Top Med Chem 8:710–724

    PubMed  Google Scholar 

  • Minovski N, Perdih A, Solmajer T (2012) Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment. J Mol Model 18:1735–1753

    PubMed  CAS  Google Scholar 

  • Mo X, Wang Z, Wang B et al (2011) Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun 406:341–347

    PubMed  CAS  Google Scholar 

  • Moore JM, Bradshaw E, Seipke RF et al (2012) Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in streptomyces bacteria. Methods Enzymol 517:367–385

    PubMed  CAS  Google Scholar 

  • Mootz HD, Kessler N, Linne U et al (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981

    PubMed  CAS  Google Scholar 

  • Moss SJ, Carletti I, Olano C et al (2006) Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues. Chem Commun 22:2341–2343

    Google Scholar 

  • Mutak S (2007) Azalides from azithromycin to new azalide derivatives. J Antibiot 60:85–122

    PubMed  CAS  Google Scholar 

  • Nakano C, Ootsuka T, Takayama K et al (2011) Characterization of the Rv3378c gene product, a new diterpene synthase for producing tuberculosinol and (13R, S)-isotuberculosinol (nosyberkol), from the Mycobacterium tuberculosis H37Rv genome. Biosci Biotechnol Biochem 75:75–81

    PubMed  CAS  Google Scholar 

  • Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384

    PubMed  CAS  Google Scholar 

  • Nguyen KT, He X, Alexander DC et al (2010) Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 54:1404–1413

    PubMed  CAS  Google Scholar 

  • Olano C, Wilkinson B, Sánchez C et al (2004a) Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol 11:87–97

    PubMed  CAS  Google Scholar 

  • Olano C, Moss SJ, Braña AF et al (2004b) Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation. Mol Microbiol 52:1745–1756

    PubMed  CAS  Google Scholar 

  • Olano C, Lombó F, Méndez C et al (2008a) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    PubMed  CAS  Google Scholar 

  • Olano C, Abdelfattah MS, Gullón S et al (2008b) Glycosylated derivatives of steffimycin: insights into the role of the sugar moieties for the biological activity. ChemBioChem 9:624–633

    PubMed  CAS  Google Scholar 

  • Olano C, Gómez C, Pérez M et al (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol 16:1031–1044

    PubMed  CAS  Google Scholar 

  • Olano C, Méndez C, Salas JA (2010) Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 27:571–616

    PubMed  CAS  Google Scholar 

  • Olano C, Méndez C, Salas JA (2011) Gene clusters for bioactive natural products in actinomycetes and their use in combinatorial biosynthesis. In: Dyson P (ed) Streptomyces molecular biology and biotechnology, 1st edn. Caiser Academic Press, Norfolk, pp 195–232

    Google Scholar 

  • Onaka H, Mori Y, Igarashi Y et al (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406

    PubMed  CAS  Google Scholar 

  • Ou X, Zhang B, Zhang L et al (2009) Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol 75:2158–2165

    PubMed  CAS  Google Scholar 

  • Palaniappan N, Ayers S, Gupta S et al (2006) Production of hygromycin A analogs in Streptomyces hygroscopicus NRRL2388 through identification and manipulation of the biosynthetic gene cluster. Chem Biol 13:753–764

    PubMed  CAS  Google Scholar 

  • Park JW, Park SR, Nepal KK et al (2011) Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 7:843–852

    PubMed  CAS  Google Scholar 

  • Pawlik K, Kotowska M, Chater KF et al (2007) A cryptic Type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch Microbiol 187:87–99

    PubMed  CAS  Google Scholar 

  • Pérez M, Lombó F, Zhu L et al (2005) Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun 12:1604–1606

    Google Scholar 

  • Pérez M, Lombó F, Baig I et al (2006) Combinatorial biosynthesis of antitumor deoxysugar pathways in Streptomyces griseus: Reconstitution of “unnatural natural gene clusters” for the biosynthesis of four 2,6-D-dideoxyhexoses. Appl Environ Microbiol 72:6644–6652

    PubMed  Google Scholar 

  • Pérez M, Baig I, Braña AF et al (2008) Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem 9:2295–2304

    PubMed  Google Scholar 

  • Phillips JW, Goetz MA, Smith SK et al (2011) Discovery of kibdelomycin, a potent new class of bacterial Type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 18:955–965

    PubMed  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ et al (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    PubMed  CAS  Google Scholar 

  • Rateb ME, Houssen WE, Harrison WT et al (2011) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74:1965–1971

    PubMed  CAS  Google Scholar 

  • Rawlings BJ (2001) Type I polyketide biosynthesis in bacteria (Part A—erythromycin biosynthesis). Nat Prod Rep 18:190–227

    PubMed  CAS  Google Scholar 

  • Read AF, Day T, Huijben S (2011) The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci USA 108:10871–10877

    PubMed  CAS  Google Scholar 

  • Reeves CD, Murli S, Ashley GW et al (2001) Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. Biochemistry 40:15464–15470

    PubMed  CAS  Google Scholar 

  • Remsing LL, Garcia-Bernardo J, Gonzalez A et al (2002) Ketopremithramycins and ketomithramycins, four new aureolic acid-type compounds obtained upon inactivation of two genes involved in the biosynthesis of the deoxysugar moieties of the antitumor drug mithramycin by Streptomyces argillaceus, reveal novel insights into post-PKS tailoring steps of the mithramycin biosynthetic pathway. J Am Chem Soc 124:1606–1614

    PubMed  CAS  Google Scholar 

  • Robbel L, Knappe TA, Linne U et al (2010) Erythrochelin-a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea. FEBS J 277:663–676

    PubMed  CAS  Google Scholar 

  • Rodríguez L, Oelkers C, Aguirrezabalaga I et al (2000) Generation of hybrid elloramycin analogs by combinatorial biosynthesis using genes from anthracycline-type and macrolide biosynthetic pathways. J Mol Microbiol Biotechnol 2:271–276

    PubMed  Google Scholar 

  • Rodríguez L, Rodríguez D, Olano C et al (2001) Functional analysis of OleY L-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in Streptomyces antibioticus. J Bacteriol 183:5358–5363

    PubMed  Google Scholar 

  • Romero D, Traxler MF, López D et al (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505

    PubMed  CAS  Google Scholar 

  • Sakoulas G, Nam SJ, Loesgen S et al (2012) Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus. PLoS ONE 7:e29439

    PubMed  CAS  Google Scholar 

  • Salas JA, Méndez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232

    PubMed  CAS  Google Scholar 

  • Salas AP, Zhu L, Sánchez C et al (2005) Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58:17–27

    PubMed  CAS  Google Scholar 

  • Sánchez C, Zhu L, Braña AF et al (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci USA 102:461–466

    PubMed  Google Scholar 

  • Sánchez C, Salas AP, Braña AF et al (2009) Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles. Chem Commun 21:4118–4120

    Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    PubMed  CAS  Google Scholar 

  • Seyedsayamdost MR, Traxler MF, Clardy J et al (2012) Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes. Methods Enzymol 517:89–109

    PubMed  CAS  Google Scholar 

  • Singh BK, Macdonald CA (2010) Drug discovery from uncultivable microorganisms. Drug Discov Today 15:792–799

    PubMed  CAS  Google Scholar 

  • Singh SB, Young K, Miesel L (2011) Screening strategies for discovery of antibacterial natural products. Expert Rev Anti Infect Ther 9:589–613

    PubMed  CAS  Google Scholar 

  • Song L, Barona-Gomez F, Corre C et al (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755

    PubMed  CAS  Google Scholar 

  • Sun Y, Zhou X, Liu J et al (2002) ‘Streptomyces nanchangensis’, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371

    PubMed  CAS  Google Scholar 

  • Takamatsu S, Lin X, Nara A et al (2011) Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi-isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi-isozizaene metabolite. Microb Biotechnol 4:184–191

    PubMed  CAS  Google Scholar 

  • Tang L, McDaniel R (2001) Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8:547–555

    PubMed  CAS  Google Scholar 

  • Thapa LP, Oh TJ, Liou K et al (2008) Biosynthesis of spectinomycin: heterologous production of spectinomycin and spectinamine in an aminoglycoside-deficient host, Streptomyces venezuelae YJ003. J Appl Microbiol 105:300–308

    PubMed  CAS  Google Scholar 

  • Torrieri R, Oliveira FS, Oliveira G et al (2012) Automatic assignment of prokaryotic genes to functional categories using literature profiling. PLoS ONE 7:e47436

    PubMed  CAS  Google Scholar 

  • Toscano L, Fioriello G, Spagnoli R et al (1983) New fluorinated erythromycins obtained by mutasynthesis. J Antibiot 36:1439–1450

    PubMed  CAS  Google Scholar 

  • Walsh CT, Chen H, Keating TA et al (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    PubMed  CAS  Google Scholar 

  • Wang J, Soisson SM, Young K et al (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361

    PubMed  CAS  Google Scholar 

  • Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74:2834–2840

    PubMed  CAS  Google Scholar 

  • Ward SL, Desai RP, Hu Z et al (2007) Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase. J Ind Microbiol Biotechnol 34:9–15

    PubMed  CAS  Google Scholar 

  • Weber JM, Schoner B, Losick R (1989) Identification of a gene required for the terminal step in erythromycin A biosynthesis in Saccharopolyspora erythraea (Streptomyces erythreus). Gene 75:235–241

    PubMed  CAS  Google Scholar 

  • Wenzel SC, Muller R (2009) The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 26:1385–1407

    PubMed  CAS  Google Scholar 

  • Winter JM, Tang Y (2012) Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 23:736–743

    PubMed  CAS  Google Scholar 

  • Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31

    PubMed  CAS  Google Scholar 

  • Wood DE, Lin H, Levy-Moonshine A et al (2012) Thousands of missed genes found in bacterial genomes and their analysis with COMBREX. Biol Direct 7:37

    PubMed  CAS  Google Scholar 

  • World Health Organization (2011) The top ten causes of death. Fact sheet N°310. http://www.who.int Updated Jun 2011

  • Xue Q, Ashley G, Hutchinson CR et al (1999) A multiplasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci USA 96:11740–11745

    PubMed  CAS  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    PubMed  CAS  Google Scholar 

  • Ziemert N, Jensen PR (2012) Phylogenetic approaches to natural product structure prediction Methods Enzymol 517:161–182

    Google Scholar 

Download references

Acknowledgments

Research at the authors’ laboratory has been supported by grants from Spanish Ministry of Science and Innovation (BIO2008-00269 to C. Méndez; BIO2009-07643 to J. A. Salas), Red Temática de Investigación Cooperativa de Centros de Cáncer (Ministry of Health, ISCIII-RETIC RD06/0020/0026) to J. A. Salas, and Obra Social Cajastur to C. Olano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olano, C., Méndez, C., Salas, J.A. (2014). Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining. In: Villa, T., Veiga-Crespo, P. (eds) Antimicrobial Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40444-3_1

Download citation

Publish with us

Policies and ethics