Skip to main content

Concluding Remarks

  • Chapter
  • First Online:
  • 1929 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

In the application of Kohn-Sham density functional theory (KS-DFT), the exchange-correlation energy must be approximated. A ladder of such approximations has been proposed, none of which is equally good for every problem. There is still a long way to go. In this chapter, we first give a brief summary of what we have learned in pursuing an improved functional Sect. 5.1, giving a list of the doubly hybrid density functionals (DHDFs) developed till date in the literature. We then outline, in Sect. 5.2, the limitations and the anticipated future development for the XYG3 type of DHDFs. Finally, a perspective is presented, which highlights some fundamental issues in the ground state KS-DFT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: new multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A 108:4786–4791. doi:10.1021/jp049253v

    Article  CAS  Google Scholar 

  2. Zhao Y, Lynch BJ, Truhlar DG (2005) Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Phys Chem Chem Phys 7:43–52. doi:10.1039/b416937a

    Article  CAS  Google Scholar 

  3. Zhao Y, Meana-Pañeda R, Truhlar DG (2012) MLGAUSS-version 3.0. University of Minnesota, Minneapolis

    Google Scholar 

  4. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108. doi:10.1063/1.2148954

    Article  Google Scholar 

  5. Sharkas K, Toulouse J, Savin A (2011) Double-hybrid density-functional theory made rigorous. J Chem Phys 134:064113. doi:10.1063/1.3544215

    Article  Google Scholar 

  6. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398–4401. doi:10.1039/b608478h

    Article  CAS  Google Scholar 

  7. Tarnopolsky A, Karton A, Sertchook R et al (2008) Double-hybrid functionals for thermochemical kinetics. J Phys Chem 112:3–8. doi:10.1021/jp710179r

    Article  CAS  Google Scholar 

  8. Karton A, Tarnopolsky A, Lamère J-F et al (2008) Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J Phys Chem A 112:12868–12886. doi:10.1021/jp801805p

    Article  CAS  Google Scholar 

  9. Sancho-García JC, Pérez-Jiménez AJ (2009) Assessment of double-hybrid energy functionals for pi-conjugated systems. J Chem Phys 131:084108. doi:10.1063/1.3212881

    Article  Google Scholar 

  10. Benighaus T, DiStasio RA, Lochan RC et al (2008) Semiempirical double-hybrid density functional with improved description of long-range correlation. J Phys Chem A 112:2702–2712. doi:10.1021/jp710439w

    Article  CAS  Google Scholar 

  11. Graham D, Menon A, Goerigk L et al (2009) Optimization and basis-set dependence of a restricted-open-shell form of B2-PLYP double-hybrid density functional theory. J Phys Chem A 113:9861–9873. doi:10.1021/jp9042864

    Article  CAS  Google Scholar 

  12. Chai J-D, Head-Gordon M (2009) Long-range corrected double-hybrid density functionals. J Chem Phys 131:174105. doi:10.1063/1.3244209

    Article  Google Scholar 

  13. Mohajeri A, Alipour M (2012) B2-PPW91: a promising double-hybrid density functional for the electric response properties. J Chem Phys 136:124111. doi:10.1063/1.3698284

    Article  Google Scholar 

  14. Kozuch S, Gruzman D, Martin JML (2010) DSD-BLYP: a general purpose double hybrid density functional including spin component scaling and dispersion correction. J Phys Chem C 114:20801–20808. doi:10.1021/jp1070852

    Article  CAS  Google Scholar 

  15. Kozuch S, Martin JML (2011) DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys Chem Chem Phys 13:20104–20107. doi:10.1039/C1CP22592H

    Article  CAS  Google Scholar 

  16. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theor Comput 7:291–309. doi:10.1021/ct100466k

    Article  CAS  Google Scholar 

  17. Brémond E, Adamo C (2011) Seeking for parameter-free double-hybrid functionals: the PBE0-DH model. J Chem Phys 135:024106. doi:10.1063/1.3604569

    Article  Google Scholar 

  18. Chai J-D, Mao S-P (2012) Seeking for reliable double-hybrid density functionals without fitting parameters: the PBE0-2 functional. Chem Phys Lett 538:121–125. doi:10.1016/j.cplett.2012.04.045

    Article  CAS  Google Scholar 

  19. Zhang Y, Xu X, Goddard WA (2009) Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc Natl Acad Sci USA 106:4963–4968. doi:10.1073/pnas.0901093106

    Article  CAS  Google Scholar 

  20. Görling A, Levy M (1993) Correlation-energy functional and its hight-density limit obtained from a coupling-constant perturbation expansion. Phys Rev B 47:13105–13113. doi:10.1103/PhysRevB.47.13105

    Article  Google Scholar 

  21. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  22. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298. doi:10.1103/PhysRevB.13.4274

    Article  CAS  Google Scholar 

  23. Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: wave-vector analysis. Phys Rev B 15:2884–2901. doi:10.1103/PhysRevB.15.2884

    Article  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. 3.: the role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  26. Zhang IY, Luo Y, Xu X (2010) XYG3 s: Speedup of the XYG3 fifth-rung density functional with scaling-all-correlation method. J Chem Phys 132:194105. doi:10.1063/1.3424845

    Article  Google Scholar 

  27. Zhang I, Luo Y, Xu X (2010) Basis set dependence of the doubly hybrid XYG3 functional. J Chem Phys 133:104105. doi:10.1063/1.3488649

    Article  Google Scholar 

  28. Zhang IY, Xu X, Jung Y, Goddard WA (2011) A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. Proc Natl Acad Sci USA 108:19896–19900. doi:10.1073/pnas.1115123108

    Article  CAS  Google Scholar 

  29. Zhang IY, Su NQ, Brémond ÉAG et al (2012) Doubly hybrid density functional xDH-PBE0 from a parameter-free global hybrid model PBE0. J Chem Phys 136:174103. doi:10.1063/1.3703893

    Article  Google Scholar 

  30. Zhang IY, Xu X (2013) Reaching a uniform accuracy for complex molecular systems: long-range-corrected XYG3 doubly hybrid density functional. J Phys Chem Lett 4:1669–1675. doi:10.1021/jz400695u

    Article  CAS  Google Scholar 

  31. Zhang IY, Xu X (2011) Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. Int Rev Phys Chem 30:115–160. doi:10.1080/0144235X.2010.542618

    Article  Google Scholar 

  32. Burns LA, Vázquez-Mayagoitia AV, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J Chem Phys 134:084107. doi:10.1063/1.3545971

    Article  Google Scholar 

  33. Zhang IY, Xu X (2012) XYG3 and XYGJ-OS performances for noncovalent binding energies relevant to biomolecular structures. Phys Chem Chem Phys 14:12554–12570. doi:10.1039/c2cp40904f

    Article  CAS  Google Scholar 

  34. Su NQ, Zhang IY, Xu X, Analytic derivatives for the XYG3 type of doubly hybrid density functionals: theory, implementation, and assessment. J Comput Chem 34:1759–1774. doi:10.1002/jcc.23312

  35. Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963:2–6. doi:10.1016/j.comptc.2010.09.002

    Article  CAS  Google Scholar 

  36. Cohen AJ, Mori-Sánchez P, Yang WT (2011) Challenges for density functional theory. Chem Rev 112:289–320. doi:10.1021/cr200107z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Ying Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, I.Y., Xu, X. (2014). Concluding Remarks. In: A New-Generation Density Functional. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40421-4_5

Download citation

Publish with us

Policies and ethics