Skip to main content

Benchmarking the Performance of DHDFs for the Main Group Chemistry

  • Chapter
  • First Online:
  • 1977 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

On one hand, chemistry is very rich. On the other hand, density functionals are all approximate and mostly contain empirical parameters, such that not every functional is equally applicable to every chemical problem. This has made benchmarking of the functional performance inevitable. Our focus here is to examine the performance of some fifth rung functionals, while selected results of the lower rung functionals are presented for comparison. We have examined the DHDFs’ performance in the prediction of heats of formation (HOFs, Sect. 3.1), ionization potentials (IPs, Sect. 3.2), electron affinities (EAs, Sect. 3.2), bond dissociation energies (BDEs, Sect. 3.3), reaction barrier heights (RBHs, Sect. 3.4), and noncovalent interactions (NCIs, Sect. 3.5) using some well-established benchmarking data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lide DR (2001) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  2. Callonion JH, Hirota E, Kuchitsu K, Lafferty WJ, Maki AG (1976) Numerical data and function relationships in science and technology. Springer, West Berlin

    Google Scholar 

  3. Masterton ML, Slowinski EJ, Stanitski CL (1983) Chemical principles. CBS College Publishing, Philadelphia

    Google Scholar 

  4. Neutral Thermochemical Data (2005) NIST Chemistry WebBook, http://webook.nist.gov/chemistry. Accessed 15 Aprl 2013

  5. Chase MW, Davies CA, Downey JR et al (1985) Janaf thermochemical tables—3rd edition.Parts 1 (Al-Co). J Phys Chem Ref Data 14:1–926. doi:10.1063/1.555747

    Article  CAS  Google Scholar 

  6. Ruscic B, Boggs JE, Burcat A et al (2005) IUPAC critical evaluation of thermochemical properties of selected radicals. Part I. J Phys Chem Ref Data 34:573–656. doi:10.1063/1.1724828

    Article  CAS  Google Scholar 

  7. Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory - A general procedure for prediction of molecular-energies. J Chem Phys 90:5622–5629. doi:10.1063/1.456415

    Article  CAS  Google Scholar 

  8. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular-energies of 1st-row and 2nd-row compounds. J Chem Phys 94:7221–7230. doi:10.1063/1.460205

    Article  CAS  Google Scholar 

  9. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. doi:10.1063/1.477422

    Article  CAS  Google Scholar 

  10. Zhang IY, Xu X (2011) Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. Int Rev Phys Chem 30:115–160. doi:10.1080/0144235X.2010.542618

    Article  Google Scholar 

  11. Slater JC (1960) Quantum theory of atomic structure, vol 2. McGraw-Hill, New York

    Google Scholar 

  12. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation endergies for local spin-density calculations–a critical analysis. Can J Phys 58:1200–1211. doi:10.1139/p80-159

    Article  CAS  Google Scholar 

  13. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  14. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687. doi:10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  16. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. doi:10.1103/PhysRevLett.91.146401

    Article  Google Scholar 

  17. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

    Article  Google Scholar 

  18. Van Voorhis T, Scuseria GE (1998) A novel form for the exchange-correlation energy functional. J Chem Phys 109:400–410. doi:10.1063/1.476577

    Article  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  21. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  22. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi:10.1039/B810189B

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  24. Zhang Y, Xu X, Goddard WA (2009) Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc Natl Acad Sci USA 106:4963–4968. doi:10.1073/pnas.0901093106

    Article  CAS  Google Scholar 

  25. Frisch MJ et al. (2003) Gaussian 03, revision A. 1. Gaussian, Inc, Pittsburgh

    Google Scholar 

  26. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  27. Frisch MJ, Pople JA, Binkley JS (1984) Self–consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269. doi:10.1063/1.447079

    Article  CAS  Google Scholar 

  28. Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: New multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A 108:4786–4791. doi:10.1021/jp049253v

    Article  CAS  Google Scholar 

  29. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108–034116. doi:10.1063/1.2148954

    Article  Google Scholar 

  30. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406. doi:10.1039/b704725h

    Article  CAS  Google Scholar 

  31. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. doi:10.1039/B508541A

    Article  CAS  Google Scholar 

  32. Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104. doi:10.1063/1.4733672

    Article  Google Scholar 

  33. Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys Rev B 15:2884–2901. doi:10.1103/PhysRevB.15.2884

    Article  Google Scholar 

  34. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  35. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298. doi:10.1103/PhysRevB.13.4274

    Article  CAS  Google Scholar 

  36. Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985. doi:10.1063/1.472933

    Article  CAS  Google Scholar 

  37. Mori-Sánchez P, Cohen AJ, Yang WT (2006) Self-interaction-free exchange-correlation functional for thermochemistry and kinetics. J Chem Phys 124:091102. doi:10.1063/1.2179072

    Article  Google Scholar 

  38. Görling A, Levy M (1993) Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys Rev B 47:13105–13113. doi:10.1103/PhysRevB.47.13105

    Article  Google Scholar 

  39. Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Mol Phys 99:1899–1940. doi:10.1080/00268970110083564

    Article  CAS  Google Scholar 

  40. Wu JM, Xu X (2007) The X1 method for accurate and efficient prediction of heats of formation. J Chem Phys 127:214105–214113. doi:10.1063/1.2800018

    Article  Google Scholar 

  41. Zhang I, Luo Y, Xu X (2010) Basis set dependence of the doubly hybrid XYG3 functional. J Chem Phys 133:104105. doi:10.1063/1.3488649

    Article  Google Scholar 

  42. Boese A, Martin J, Handy NC (2003) The role of the basis set: Assessing density functional theory. J Chem Phys 119:3005–3014. doi:10.1063/1.1589004

    Article  CAS  Google Scholar 

  43. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J Chem Phys 112:7374–7383. doi:10.1063/1.481336

    Article  CAS  Google Scholar 

  44. Job G, Herrmann F (2006) Chemical potential—A quantity in search of recognition. Eur J Phys 27:353. doi:10.1088/0143-0807/27/2/018

    Article  CAS  Google Scholar 

  45. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554–2557. doi:10.1063/1.454034

    Article  CAS  Google Scholar 

  46. Ingold CK (1934) Principles of an electronic theory of organic reactions. Chem Rev 15:225–274. doi:10.1021/cr60051a003

    Article  CAS  Google Scholar 

  47. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793. doi:10.1063/1.1749394

    Article  CAS  Google Scholar 

  48. Yokojima S, Yoshiki N, Yanoi W, Okada A (2009) Solvent effects on ionization potentials of guanine runs and chemically modified guanine in duplex DNA: Effect of electrostatic interaction and its reduction due to solvent. J Phys Chem B 113:16384–16392. doi:10.1021/jp9054582

    Article  CAS  Google Scholar 

  49. Steenken S, Telo JP, Novais HM, Candeias LP (1992) One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J Am Chem Soc 114:4701–4709. doi:10.1021/ja00038a037

    Article  CAS  Google Scholar 

  50. Khistyaev K, Bravaya KB, Kamarchik E et al (2011) The effect of microhydration on ionization energies of thymine. Faraday Discuss 150:313–330. doi:10.1039/C0FD00002G

    Article  CAS  Google Scholar 

  51. Vijayaraj R, Subramanian V, Chattaraj PK (2009) Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J Chem Theory Comput 5:2744–2753. doi:10.1021/ct900347f

    Article  CAS  Google Scholar 

  52. Fayet G, Joubert L, Rotureau P, Adamo C (2009) On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility. Chem Phys Lett 467:407–411. doi:10.1016/j.cplett.2008.11.033

    Article  CAS  Google Scholar 

  53. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873. doi:10.1021/cr990029p

    Article  CAS  Google Scholar 

  54. Thanikaivelan P, Subramanian V, Raghava Rao J, Unni Nair B (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323:59–70. doi:10.1016/S0009-2614(00)00488-7

    Article  CAS  Google Scholar 

  55. Su NQ, Zhang IY, Wu JM, Xu X (2011) Calculations of ionization energies and electron affinities for atoms and molecules: A comparative study with different methods. Front Chem China 6:269–279. doi:10.1007/s11458-011-0256-3

    Article  Google Scholar 

  56. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. doi:10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  57. Cohen AJ, Mori-Sánchez P, Yang WT (2011) Challenges for density functional theory. Chem Rev 112:289–320. doi:10.1021/cr200107z

    Article  Google Scholar 

  58. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. doi:10.1063/1.478401

    Article  CAS  Google Scholar 

  59. Galbraith JM, Schaefer HF (1996) Concerning the applicability of density functional methods to atomic and molecular negative ions. J Chem Phys 105:862–864. doi:10.1063/1.471933

    Article  CAS  Google Scholar 

  60. Rösch N, Trickey SB (1997) Concerning the applicability of density functional methods to atomic and molecular negative ions–Comment. J Chem Phys 106:8940–8941. doi:10.1063/1.473946

    Article  Google Scholar 

  61. Wu JM, Xu X (2008) Improving the B3LYP bond energies by using the X1 method. J Chem Phys 129:164103–164111. doi:10.1063/1.2998231

    Article  Google Scholar 

  62. Zhang IY, Wu J, Luo Y, Xu X (2010) Trends in R − X Bond dissociation energies (R· = Me, Et, i-Pr, t-Bu, X· = H, Me, Cl, OH). J Chem Theory Comput 6:1462–1469. doi:10.1021/ct100010d

    Article  CAS  Google Scholar 

  63. Zhang IY, Wu J, Luo Y, Xu X (2011) Accurate bond dissociation enthalpies by using doubly hybrid XYG3 functional. J Comput Chem 32:1824–1838. doi:10.1002/jcc.21764

    Article  CAS  Google Scholar 

  64. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  65. Karton A, Tarnopolsky A, Lamère JF et al (2008) Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J Phys Chem A 112:12868–12886. doi:10.1021/jp801805p

    Article  CAS  Google Scholar 

  66. Coote ML (2004) Reliable theoretical procedures for the calculation of electronic-structure information in hydrogen abstraction reactions. J Phys Chem A 108:3865–3872. doi:10.1021/jp049863v

    Article  CAS  Google Scholar 

  67. Izgorodina E, Coote M, Radom L (2005) Trends in R-X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A surprising shortcoming of density functional theory. J Phys Chem A 109:7558–7566. doi:10.1021/jp052021r

    Article  CAS  Google Scholar 

  68. Check C, Gilbert T (2005) Progressive systematic underestimation of reaction energies by the B3LYP model as the number of C–C bonds increases: Why organic chemists should use multiple DFT models for calculations involving polycarbon hydrocarbons. J Org Chem 70:9828–9834. doi:10.1021/jo051545k

    Article  CAS  Google Scholar 

  69. Grimme S (2006) Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angew Chem Int Ed 45:4460–4464. doi:10.1002/anie.200600448

    Article  CAS  Google Scholar 

  70. Wodrich MD, Corminboeuf C, Schleyer PV (2006) Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org Lett 8:3631–3634. doi:10.1021/ol061016i

    Article  CAS  Google Scholar 

  71. Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A 109:2012–2018. doi:10.1021/jp045141s

    Article  CAS  Google Scholar 

  72. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109:5656–5667. doi:10.1021/jp050536c

    Article  CAS  Google Scholar 

  73. Minnesota Database Collection (2006) Lynch BJ, Zhao Y, Truhlar DG. http://t1.chem.umn.edu/misc/database_group/database_therm_bh. Accessed 15 Aprl 2013

  74. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functionals. J Chem Phys 109:6264–6271. doi:10.1063/1.477267

    Article  CAS  Google Scholar 

  75. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  76. Zhang LL, Lu YP, Lee SY, Zhang DH (2007) A transition state wave packet study of the H + CH4 reaction. J Chem Phys 127:234313. doi:10.1063/1.2812553

    Article  Google Scholar 

  77. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  78. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction—A mechanism of protein-structure stabilization. Science 229:23–28. doi:10.1126/science.3892686

    Article  CAS  Google Scholar 

  79. Lehn J-M (1990) Perspectives in supramolecular chemistry—From molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed 29:1304–1319. doi:10.1002/anie.199013041

    Article  Google Scholar 

  80. Guallar V, Borrelli KW (2005) A binding mechanism in protein-nucleotide interactions: Implication for U1A RNA binding. Proc Natl Acad Sci USA 102:3954–3959. doi:10.1073/pnas.0500888102

    Article  CAS  Google Scholar 

  81. Vondrášek J, Bendová L, Klusák V, Hobza P (2005) Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J Am Chem Soc 127:2615–2619. doi:10.1021/ja044607h

    Article  Google Scholar 

  82. Dąbkowska I, Gonzalez HV, Jurečka P, Hobza P (2005) Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5’-d(GCGAAGC)-3’ hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels RID A-6885-2008. J Phys Chem A 109:1131–1136. doi:10.1021/jp046738a

    Article  Google Scholar 

  83. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: A challenge for experiment and theory. Chem Rev 100:143–167. doi:10.1021/cr9900331

    Article  Google Scholar 

  84. Hobza P, Šponer J (1999) Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem Rev 99:3247–3276. doi:10.1021/cr9800255

    Article  CAS  Google Scholar 

  85. Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for pi–pi interactions: The benzene dimer. J Am Chem Soc 124:10887–10893. doi:10.1021/ja025896h

    Article  CAS  Google Scholar 

  86. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063. doi:10.1021/cr1000173

    Article  CAS  Google Scholar 

  87. Morgado CA, Jurečka P, Svozil D et al (2010) Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06–2X, CBS(SCS-D) and force field descriptions. Phys Chem Chem Phys 12:3522–3534. doi:10.1039/b924461a

    Article  CAS  Google Scholar 

  88. Johnson ER, Becke AD, Sherrill CD, DiLabio GA (2009) Oscillations in meta-generalized-gradient approximation potential energy surfaces for dispersion-bound complexes. J Chem Phys 131:034111–034117. doi:10.1063/1.3177061

    Article  Google Scholar 

  89. Dobson JF, McLennan K, Rubio A et al (2001) Prediction of dispersion forces: Is there a problem. Aust J Chem 54:513–527. doi:10.1071/CH01052

    Article  CAS  Google Scholar 

  90. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553–566, 1970). Mol Phys 100:65–73. doi:10.1080/00268970110088901

    Article  Google Scholar 

  91. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7:291–309. doi:10.1021/ct100466k

    Article  CAS  Google Scholar 

  92. Wu Q, Yang WT (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116:515–524. doi:10.1063/1.1424928

    Article  CAS  Google Scholar 

  93. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. doi:10.1002/jcc.20078

    Article  CAS  Google Scholar 

  94. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154119. doi:10.1063/1.3382344

    Article  Google Scholar 

  95. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. doi:10.1103/PhysRevLett.102.073005

    Article  Google Scholar 

  96. Becke AD (2005) Real-space post-Hartree-Fock correlation models. J Chem Phys 122:064101. doi:10.1063/1.1844493

    Article  Google Scholar 

  97. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101. doi:10.1063/1.2065267

    Article  Google Scholar 

  98. Dion M, Rydberg H, Schröder E et al (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401. doi:10.1103/PhysRevLett.92.246401

    Article  CAS  Google Scholar 

  99. Klimeš J, Michaelides A (2012) Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901. doi:10.1063/1.4754130

    Article  Google Scholar 

  100. Benighaus T, DiStasio RA, Lochan RC et al (2008) Semiempirical double-hybrid density functional with improved description of long-range correlation. J Phys Chem A 112:2702–2712. doi:10.1021/jp710439w

    Article  CAS  Google Scholar 

  101. Takatani T, Sherrill CD (2007) Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions. Phys Chem Chem Phys 9:6106–6114. doi:10.1039/b709669k

    Article  CAS  Google Scholar 

  102. Vázquez-Mayagoitia Á, Sherrill CD, Aprà E, Sumpter BG (2010) An assessment of density functional methods for potential energy curves of nonbonded interactions: The XYG3 and B97-D approximations. J Chem Theory Comput 6:727–734. doi:10.1021/ct900551z

    Article  Google Scholar 

  103. Becke AD (1996) Density-functional thermochemistry. 4. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. doi:10.1063/1.470829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Ying Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, I.Y., Xu, X. (2014). Benchmarking the Performance of DHDFs for the Main Group Chemistry. In: A New-Generation Density Functional. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40421-4_3

Download citation

Publish with us

Policies and ethics