Skip to main content

Cardiovascular Monitoring

  • Chapter
  • First Online:

Abstract

One of the fundamental functions in each intensive care unit is monitoring, while respiratory monitoring, cardiovascular monitoring, and cerebral monitoring are the main three monitoring functions of ICU. In the current world of increasing health technology, though, the exact and sophisticated examinations of the clinicians could not be replaced by any of these technologic improvements. A continual hemodynamic assessment after cardiac operations is a cornerstone of postoperative cardiac surgeries. The main cardiovascular monitoring methods involve – but are not confined to – the following pages, though more detailed explanations could be found in details in related texts. Noninvasive and invasive blood pressure, central venous and pulmonary artery pressure, cardiac output monitoring modalities, and the normal range for measured hemodynamic variables are among the main topics that the reader could be familiar with after reading this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • (1995) [French Society of Anesthesia and Intensive Care. Arterial catheterization and invasive measurement of blood pressure in anesthesia and intensive care in adults]. Ann Fr Anesth Reanim 14:444–453

    Google Scholar 

  • (2003) Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 99:988–1014

    Google Scholar 

  • Agarwal R, Light RP (2009) Chronobiology of arterial hypertension in hemodialysis patients: implications for home blood pressure monitoring. Am J Kidney Dis 54:693–701

    PubMed  Google Scholar 

  • Akima T, Takase B, Kosuda S, Ohsuzu F, Kawai T, Ishihara M, Akira K (2007) Systemic peripheral vascular resistance as a determinant of functional cardiac reserve in response to exercise in patients with heart disease. Angiology 58:463–471

    PubMed  Google Scholar 

  • Alford JW, Palumbo MA, Barnum MJ (2002) Compartment syndrome of the arm: a complication of noninvasive blood pressure monitoring during thrombolytic therapy for myocardial infarction. J Clin Monit Comput 17:163–166

    PubMed  Google Scholar 

  • Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15:214

    PubMed  Google Scholar 

  • Amoore JN (2012) Oscillometric sphygmomanometers: a critical appraisal of current technology. Blood Press Monit 17:80–88

    PubMed  Google Scholar 

  • Amoore JN, Guehenec M, Scordecchia R, Scott DH (2010) Auditing the technology used to measure blood pressure. J Med Eng Technol 34:209–216

    PubMed  CAS  Google Scholar 

  • Anderson JS (1997) Arterial cannulation: how to do it. Br J Hosp Med 57:497–499

    PubMed  CAS  Google Scholar 

  • Andreadis EA, Angelopoulos ET, Agaliotis GD, Tsakanikas AP, Mousoulis GP (2011) Why use automated office blood pressure measurements in clinical practice? High Blood Press Cardiovasc Prev 18:89–91

    PubMed  Google Scholar 

  • Arai T, Yamashita M (2005) Central venous catheterization in infants and children–small caliber audio-Doppler probe versus ultrasound scanner. Paediatr Anaesth 15:858–861

    PubMed  Google Scholar 

  • Ash SR (2007) Fluid mechanics and clinical success of central venous catheters for dialysis–answers to simple but persisting problems. Semin Dial 20:237–256

    PubMed  Google Scholar 

  • Asheim P, Mostad U, Aadahl P (2002) Ultrasound-guided central venous cannulation in infants and children. Acta Anaesthesiol Scand 46:390–392

    PubMed  CAS  Google Scholar 

  • Augusto JF, Teboul JL, Radermacher P, Asfar P (2011) Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states. Intensive Care Med 37:411–419

    PubMed  Google Scholar 

  • Bailey RH, Bauer JH (1993) A review of common errors in the indirect measurement of blood pressure. Sphygmomanometry. Arch Intern Med 153:2741–2748

    PubMed  CAS  Google Scholar 

  • Bajorat J, Hofmockel R, Vagts DA, Janda M, Pohl B, Beck C, Noeldge-Schomburg G (2006) Comparison of invasive and less-invasive techniques of cardiac output measurement under different haemodynamic conditions in a pig model. Eur J Anaesthesiol 23:23–30

    PubMed  CAS  Google Scholar 

  • Barmparas G, Inaba K, Georgiou C, Hadjizacharia P, Chan LS, Demetriades D, Friese R, Rhee P (2011) Swan-Ganz catheter use in trauma patients can be reduced without negatively affecting outcomes. World J Surg 35:1809–1817

    PubMed  Google Scholar 

  • Baulig W, Dullenkopf A, Kobler A, Baulig B, Roth HR, Schmid ER (2008) Accuracy of continuous central venous oxygen saturation monitoring in patients undergoing cardiac surgery. J Clin Monit Comput 22:183–188

    PubMed  Google Scholar 

  • Benington S, Ferris P, Nirmalan M (2009) Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy. Eur J Anaesthesiol 26:893–905

    PubMed  Google Scholar 

  • Berghella S, Tempo B, Bernocco A, Neri G, Fiorucci G (1979) Indications, methods and results of bacteriological examinations of central venous catheters in patients admitted to a polyvalent resuscitation center. Minerva Anestesiol 45:379–386

    PubMed  CAS  Google Scholar 

  • Berton C, Cholley B (2002) Equipment review: new techniques for cardiac output measurement–oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care 6:216–221

    PubMed  Google Scholar 

  • Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294:1625–1633

    PubMed  Google Scholar 

  • Bleul U, Bircher B, Jud RS, Kutter AP (2010) Respiratory and cardiovascular effects of doxapram and theophylline for the treatment of asphyxia in neonatal calves. Theriogenology 73:612–619

    PubMed  CAS  Google Scholar 

  • Block FE Jr, Fletcher MV, Morris TJ, Dzwonczyk R (1991) A clinical evaluation of rapid automatic noninvasive blood pressure determination with the Ohmeda 2120 “return-to-flow” method. J Clin Monit 7:241–244

    PubMed  Google Scholar 

  • Booth KL, Mercer-Smith G, McConkey C, Parissis H (2012) Catheter-induced pulmonary artery rupture: haemodynamic compromise necessitates surgical repair. Interact Cardiovasc Thorac Surg 15:531–533

    PubMed  Google Scholar 

  • Botha R, van Schoor AN, Boon JM, Becker JH, Meiring JH (2006) Anatomical considerations of the anterior approach for central venous catheter placement. Clin Anat 19:101–105

    PubMed  CAS  Google Scholar 

  • Boyce JM (2012) Prevention of central line-associated bloodstream infections in hemodialysis patients. Infect Control Hosp Epidemiol 33:936–944

    PubMed  Google Scholar 

  • Branthwaite MA, Bradley RD (1968) Measurement of cardiac output by thermal dilution in man. J Appl Physiol 24:434–438

    PubMed  CAS  Google Scholar 

  • Brusasco C, Corradi F, Zattoni PL, Launo C, Leykin Y, Palermo S (2009) Ultrasound-guided central venous cannulation in bariatric patients. Obes Surg 19:1365–1370

    PubMed  Google Scholar 

  • Brzezinski M, Luisetti T, London MJ (2009) Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg 109:1763–1781

    PubMed  Google Scholar 

  • Bur A, Hirschl MM, Herkner H, Oschatz E, Kofler J, Woisetschlager C, Laggner AN (2000) Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med 28:371–376

    PubMed  CAS  Google Scholar 

  • Bussieres JS (2007) Iatrogenic pulmonary artery rupture. Curr Opin Anaesthesiol 20:48–52

    PubMed  Google Scholar 

  • Calabria M, Zamboli P, D’Amelio A, Granata A, Di Lullo L, Floccari F, Logias F, Fiorini F (2012) Use of ECG-EC in the positioning of central venous catheters. G Ital Nefrol 29:49–57

    PubMed  Google Scholar 

  • Campbell NR, McKay DW, Chockalingam A, Fodor JG (1994) Errors in assessment of blood pressure: sphygmomanometers and blood pressure cuffs. Can J Public Health 85(Suppl 2):S22–S25

    PubMed  Google Scholar 

  • Celoria G, Dawson JA, Teres D (1987) Compartment syndrome in a patient monitored with an automated blood pressure cuff. J Clin Monit 3:139–141

    PubMed  CAS  Google Scholar 

  • Chatterjee A, DePriest K, Blair R, Bowton D, Chin R (2010) Results of a survey of blood pressure monitoring by intensivists in critically ill patients: a preliminary study. Crit Care Med 38:2335–2338

    PubMed  Google Scholar 

  • Chee BC, Baldwin IC, Shahwan-Akl L, Fealy NG, Heland MJ, Rogan JJ (2011) Evaluation of a radial artery cannulation training program for intensive care nurses: a descriptive, explorative study. Aust Crit Care 24:117–125

    PubMed  Google Scholar 

  • Chen CK, Tan PP, Lee HC (2007) Sternocleoidomastoid muscle length predicts depth of central venous catheter insertion. Acta Anaesthesiol Taiwan 45:211–215

    PubMed  Google Scholar 

  • Cheng HM, Sung SH, Shih YT, Chuang SY, Yu WC, Chen CH (2012) Measurement of central aortic pulse pressure: noninvasive brachial cuff-based estimation by a transfer function vs. a novel pulse wave analysis method. Am J Hypertens 25:1162–1169

    PubMed  Google Scholar 

  • Chew MS, Poelaert J (2003) Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med 29:1889–1894

    PubMed  Google Scholar 

  • Chio SS, Urbina EM, Lapointe J, Tsai J, Berenson GS (2011) Korotkoff sound versus oscillometric cuff sphygmomanometers: comparison between auscultatory and DynaPulse blood pressure measurements. J Am Soc Hypertens 5:12–20

    PubMed  Google Scholar 

  • Cholley BP, Payen D (2005) Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 11:424–429

    PubMed  Google Scholar 

  • Chong SW, Peyton PJ (2012) A meta-analysis of the accuracy and precision of the ultrasonic cardiac output monitor (USCOM). Anaesthesia 67:1266–1271

    PubMed  CAS  Google Scholar 

  • Chopra V, Anand S, Krein SL, Chenoweth C, Saint S (2012) Bloodstream infection, venous thrombosis, and peripherally inserted central catheters: reappraising the evidence. Am J Med 125:733–741

    PubMed  Google Scholar 

  • Clark VL, Kruse JA (1992) Arterial catheterization. Crit Care Clin 8:687–697

    PubMed  CAS  Google Scholar 

  • Cockings JG, Webb RK, Klepper ID, Currie M, Morgan C (1993). The Australian Incident Monitoring Study. Blood pressure monitoring–applications and limitations: an analysis of 2000 incident reports. Anaesth Intensive Care 21:565–569

    PubMed  CAS  Google Scholar 

  • Cohen IL, Perkins RJ, Bilen Z, Lumb PD (1991) Continuous hemodynamic monitoring: an integrated invasive-noninvasive approach using the Fick principle. Appl Cardiopulm Pathophysiol 3:351–359

    PubMed  CAS  Google Scholar 

  • Compton F, Schafer JH (2009) Noninvasive cardiac output determination: broadening the applicability of hemodynamic monitoring. Semin Cardiothorac Vasc Anesth 13:44–55

    PubMed  Google Scholar 

  • Compton F, Wittrock M, Schaefer JH, Zidek W, Tepel M, Scholze A (2008a) Noninvasive cardiac output determination using applanation tonometry-derived radial artery pulse contour analysis in critically ill patients. Anesth Analg 106:171–174, table of contents

    PubMed  Google Scholar 

  • Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH (2008b) Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth 100:451–456

    PubMed  CAS  Google Scholar 

  • Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    PubMed  Google Scholar 

  • Cotter G, Williams SG, Vered Z, Tan LB (2003) Role of cardiac power in heart failure. Curr Opin Cardiol 18:215–222

    PubMed  Google Scholar 

  • Cousins TR, O’Donnell JM (2004) Arterial cannulation: a critical review. AANA J 72:267–271

    PubMed  Google Scholar 

  • Critchley LA (2011) Validation of the MostCare pulse contour cardiac output monitor: beyond the Bland and Altman Plot. Anesth Analg 113:1292–1294

    PubMed  Google Scholar 

  • Critchley LA, Lee A, Ho AM (2010) A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 111:1180–1192

    PubMed  Google Scholar 

  • Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31:818–822

    PubMed  Google Scholar 

  • Daily PO, Griepp RB, Shumway NE (1970) Percutaneous internal jugular vein cannulation. Arch Surg 101:534–536

    PubMed  CAS  Google Scholar 

  • de Waal EE, Wappler F, Buhre WF (2009) Cardiac output monitoring. Curr Opin Anaesthesiol 22:71–77

    PubMed  Google Scholar 

  • Di Iorio BR, Mondillo F, Bortone S, Nargi P, Capozzi M, Spagnuolo T, Cucciniello E, Bellizzi V (2006) Fourteen years of hemodialysis with a central venous catheter: mechanical long-term complications. J Vasc Access 7:60–65

    PubMed  Google Scholar 

  • Domino KB, Bowdle TA, Posner KL, Spitellie PH, Lee LA, Cheney FW (2004) Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology 100:1411–1418

    PubMed  Google Scholar 

  • Dorlas JC, Nijboer JA, Butijn WT, van der Hoeven GM, Settels JJ, Wesseling KH (1985) Effects of peripheral vasoconstriction on the blood pressure in the finger, measured continuously by a new noninvasive method (the Finapres). Anesthesiology 62:342–345

    PubMed  CAS  Google Scholar 

  • Durbin CG Jr (1990) The range of pulmonary artery catheter balloon inflation pressures. J Cardiothorac Anesth 4:39–42

    PubMed  Google Scholar 

  • Eckert S, Gleichmann S, Gleichmann U (1996) Automated blood pressure measurement in special situations: patients with chronic atrial fibrillation or chronic aortic regurgitation. Z Kardiol 85(Suppl 3):92–98

    PubMed  Google Scholar 

  • Elliott CG, Zimmerman GA, Clemmer TP (1979) Complications of pulmonary artery catheterization in the care of critically ill patients. A prospective study. Chest 76:647–652

    PubMed  CAS  Google Scholar 

  • English IC, Frew RM, Pigott JF, Zaki M (1995) Percutaneous catheterisation of the internal jugular vein. 1969. Anaesthesia 50:1071–1076; discussion 1070

    PubMed  CAS  Google Scholar 

  • Engoren M, Barbee D (2005) Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. Am J Crit Care 14:40–45

    PubMed  Google Scholar 

  • Fagnoul D, Vincent JL, Backer DD (2012) Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care 16:460

    PubMed  Google Scholar 

  • Fakler U, Pauli C, Balling G, Lorenz HP, Eicken A, Hennig M, Hess J (2007) Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J Thorac Cardiovasc Surg 133:224–228

    PubMed  CAS  Google Scholar 

  • Ferguson M, Max MH, Marshall W (1988) Emergency department infraclavicular subclavian vein catheterization in patients with multiple injuries and burns. South Med J 81:433–435

    PubMed  CAS  Google Scholar 

  • Frank O (1990) The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J Mol Cell Cardiol 22:255–277

    PubMed  CAS  Google Scholar 

  • Franklin CM (1995a) The technique of radial artery cannulation. Tips for maximizing results while minimizing the risk of complications. J Crit Illn 10:424–432

    PubMed  CAS  Google Scholar 

  • Franklin CM (1995b) The technique of dorsalis pedis cannulation. An overlooked option when the radial artery cannot be used. J Crit Illn 10:493–498

    PubMed  CAS  Google Scholar 

  • Frazier SK, Skinner GJ (2008) Pulmonary artery catheters: state of the controversy. J Cardiovasc Nurs 23:113–121; quiz 122–113

    PubMed  Google Scholar 

  • Furuya EY, Dick A, Perencevich EN, Pogorzelska M, Goldmann D, Stone PW (2011) Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One 6:e15452

    PubMed  CAS  Google Scholar 

  • Gan TJ, Arrowsmith JE (1997) The oesophageal Doppler monitor. BMJ 315:893–894

    PubMed  CAS  Google Scholar 

  • Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL (2012) Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev 3:CD004084

    PubMed  Google Scholar 

  • Geerts BF, Aarts LP, Jansen JR (2011) Methods in pharmacology: measurement of cardiac output. Br J Clin Pharmacol 71:316–330

    PubMed  Google Scholar 

  • Ghio S (2005) Pulmonary hypertension in advanced heart failure. Herz 30:311–317

    PubMed  Google Scholar 

  • Gibson F, Bodenham A (2013) Misplaced central venous catheters: applied anatomy and practical management. Br J Anaesth 110:333–346

    PubMed  CAS  Google Scholar 

  • Gibson DG, Francis DP (2003) Clinical assessment of left ventricular diastolic function. Heart 89:231–238

    PubMed  Google Scholar 

  • Godoy MC, Leitman BS, de Groot PM, Vlahos I, Naidich DP (2012) Chest radiography in the ICU: part 2, evaluation of cardiovascular lines and other devices. AJR Am J Roentgenol 198:572–581

    PubMed  Google Scholar 

  • Gologorsky E, Gologorsky A, Barron ME (2012) Pulmonary artery catheter in cardiac surgery revisited. Anesth Analg 114:1368; author reply 1369

    PubMed  Google Scholar 

  • Gorback MS, Quill TJ, Lavine ML (1991) The relative accuracies of two automated noninvasive arterial pressure measurement devices. J Clin Monit 7:13–22

    PubMed  CAS  Google Scholar 

  • Guleri A, Kumar A, Morgan RJ, Hartley M, Roberts DH (2012) Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg Infect (Larchmt) 13:171–174

    Google Scholar 

  • Gurgel ST, do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    PubMed  Google Scholar 

  • Hardy JF, Morissette M, Taillefer J, Vauclair R (1983) Pathophysiology of rupture of the pulmonary artery by pulmonary artery balloon-tipped catheters. Anesth Analg 62:925–930

    PubMed  CAS  Google Scholar 

  • Harrigan RA, Chan TC, Moonblatt S, Vilke GM, Ufberg JW (2007) Temporary transvenous pacemaker placement in the emergency department. J Emerg Med 32:105–111

    PubMed  Google Scholar 

  • Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366:472–477

    PubMed  Google Scholar 

  • Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, Singer M, Rowan K (2006) An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial. Health Technol Assess 10:iii–iv, ix–xi, 1–133

    CAS  Google Scholar 

  • Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR (2000) Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput 16:361–374

    PubMed  CAS  Google Scholar 

  • Heiss HW (1992) Werner Forssmann: a German problem with the Nobel Prize. Clin Cardiol 15:547–549

    PubMed  CAS  Google Scholar 

  • Heresi GA, Arroliga AC, Wiedemann HP, Matthay MA (2006) Pulmonary artery catheter and fluid management in acute lung injury and the acute respiratory distress syndrome. Clin Chest Med 27:627–635; abstract ix

    PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Fontao MJ, Mojon A, Fernandez JR (2013) Ambulatory blood pressure monitoring: importance of sampling rate and duration-48 versus 24 hours-on the accurate assessment of cardiovascular risk. Chronobiol Int 30(1–2):55–67

    PubMed  Google Scholar 

  • Hessel EA, Apostolidou I (2011) Pulmonary artery catheter for coronary artery bypass graft: does it harm our patients? Primum non nocere. Anesth Analg 113:987–989

    PubMed  Google Scholar 

  • Hewitt NA, Braaf SC (2006) The clinical application of pulse contour cardiac output and intrathoracic volume measurements in critically ill patients. Aust Crit Care 19:86–94

    PubMed  Google Scholar 

  • Hewlett AL, Rupp ME (2012) New developments in the prevention of intravascular catheter associated infections. Infect Dis Clin North Am 26:1–11

    PubMed  Google Scholar 

  • Hida S, Ohashi S, Kinoshita H, Honda T, Yamamoto S, Kazama J, Endoh H (2010) Knotting of two central venous catheters: a rare complication of pulmonary artery catheterization. J Anesth 24:486–487

    PubMed  Google Scholar 

  • Himpe D (1990) New approach to systemic vascular resistance calculation and clinical decision making. Acta Anaesthesiol Belg 41:291–295

    PubMed  CAS  Google Scholar 

  • Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, Thomas S (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 327:361

    PubMed  Google Scholar 

  • Hofer CK, Ganter MT, Zollinger A (2007) What technique should I use to measure cardiac output? Curr Opin Crit Care 13:308–317

    PubMed  Google Scholar 

  • Holmes SJ, Kiely EM, Spitz L (1989) Vascular access. Prog Pediatr Surg 22:133–139

    PubMed  CAS  Google Scholar 

  • Holt TR, Withington DE, Mitchell E (2011) Which pressure to believe? A comparison of direct arterial with indirect blood pressure measurement techniques in the pediatric intensive care unit. Pediatr Crit Care Med 12:e391–e394

    PubMed  Google Scholar 

  • Horlocker TT, Bishop AT (1995) Compartment syndrome of the forearm and hand after brachial artery cannulation. Anesth Analg 81:1092–1094

    PubMed  CAS  Google Scholar 

  • Ikeda S, Yagi K, Schweiss JF, Homan SM (1991) In vitro reappraisal of the pulmonary artery catheter balloon volume-pressure relationship: comparison of four different catheters. Can J Anaesth 38:648–653

    PubMed  CAS  Google Scholar 

  • Ishizuka M, Nagata H, Takagi K, Kubota K (2010) Right internal jugular vein is recommended for central venous catheterization. J Invest Surg 23:110–114

    PubMed  Google Scholar 

  • Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI (2012) Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput 26:63–68

    PubMed  Google Scholar 

  • Jansen JR, Schreuder JJ, Settels JJ, Kornet L, Penn OC, Mulder PG, Versprille A, Wesseling KH (1996) Single injection thermodilution. A flow-corrected method. Anesthesiology 85:481–490

    PubMed  CAS  Google Scholar 

  • Jo YY, Song JW, Yoo YC, Park JY, Shim JK, Kwak YL (2011) The uncalibrated pulse contour cardiac output during off-pump coronary bypass surgery: performance in patients with a low cardiac output status and a reduced left ventricular function. Korean J Anesthesiol 60:237–243

    PubMed  Google Scholar 

  • Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care 8:257–261

    PubMed  Google Scholar 

  • Kalra A, Heitner S, Topalian S (2013) Iatrogenic pulmonary artery rupture during Swan-Ganz catheter placement–a novel therapeutic approach. Catheter Cardiovasc Interv 81:57–59

    PubMed  Google Scholar 

  • Kang M, Ryu HG, Son IS, Bahk JH (2011) Influence of shoulder position on central venous catheter tip location during infraclavicular subclavian approach. Br J Anaesth 106:344–347

    PubMed  CAS  Google Scholar 

  • Karakitsos D, Labropoulos N, De Groot E, Patrianakos AP, Kouraklis G, Poularas J, Samonis G, Tsoutsos DA, Konstadoulakis MM, Karabinis A (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10:R162

    PubMed  Google Scholar 

  • Katsikis A, Karavolias G, Voudris V (2009) Transfemoral percutaneous removal of a knotted Swan-Ganz catheter. Catheter Cardiovasc Interv 74:802–804

    PubMed  Google Scholar 

  • Keenan SP (2002) Use of ultrasound to place central lines. J Crit Care 17:126–137

    PubMed  Google Scholar 

  • Kelly TF Jr, Morris GC Jr, Crawford ES, Espada R, Howell JF (1981) Perforation of the pulmonary artery with Swan-Ganz catheters: diagnosis and surgical management. Ann Surg 193:686–692

    PubMed  Google Scholar 

  • Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, Hoeft A, Bendjelid K, Rex S (2012) Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care 16:R98

    PubMed  Google Scholar 

  • Kim MC, Kim KS, Choi YK, Kim DS, Kwon MI, Sung JK, Moon JY, Kang JM (2011) An estimation of right- and left-sided central venous catheter insertion depth using measurement of surface landmarks along the course of central veins. Anesth Analg 112:1371–1374

    PubMed  Google Scholar 

  • Kim WY, Lee CW, Sohn CH, Seo DW, Yoon JC, Koh JW, Kim W, Lim KS, Hong SB, Lim CM, Koh Y (2012) Optimal insertion depth of central venous catheters–is a formula required? A prospective cohort study. Injury 43:38–41

    PubMed  Google Scholar 

  • Kipnis E, Ramsingh D, Bhargava M, Dincer E, Cannesson M, Broccard A, Vallet B, Bendjelid K, Thibault R (2012) Monitoring in the intensive care. Crit Care Res Pract 2012:473507

    PubMed  Google Scholar 

  • Klepper ID, Webb RK, Van der Walt JH, Ludbrook GL, Cockings J (1993) The Australian Incident Monitoring Study. The stethoscope: applications and limitations–an analysis of 2000 incident reports. Anaesth Intensive Care 21:575–578

    PubMed  CAS  Google Scholar 

  • Knopp R, Dailey RH (1977) Central venous cannulation and pressure monitoring. JACEP 6:358–366

    PubMed  CAS  Google Scholar 

  • Kolodzik PW (1989) Guide wire embolization as a potential complication of central line placement. J Emerg Med 7:291

    PubMed  CAS  Google Scholar 

  • Kuhn CWK (2001) Hemodynamic monitoring. In: Holzheimer RG, Mannick JA (eds) Surgical treatment: evidence-based and problem-oriented. Zuckschwerdt, Munich

    Google Scholar 

  • Kujur R, Rao MS, Mrinal M (2009) How correct is the correct length for central venous catheter insertion. Indian J Crit Care Med 13:159–162

    PubMed  Google Scholar 

  • Kunizawa A, Fujioka M, Mink S, Keller E (2010) Central venous catheter-induced delayed hydrothorax via progressive erosion of central venous wall. Minerva Anestesiol 76:868–871

    PubMed  CAS  Google Scholar 

  • Lakhal K, Macq C, Ehrmann S, Boulain T, Capdevila X (2012) Noninvasive monitoring of blood pressure in the critically ill: reliability according to the cuff site (arm, thigh, or ankle). Crit Care Med 40:1207–1213

    PubMed  Google Scholar 

  • Langesaeter E, Rosseland LA, Stubhaug A (2008) Continuous invasive blood pressure and cardiac output monitoring during cesarean delivery: a randomized, double-blind comparison of low-dose versus high-dose spinal anesthesia with intravenous phenylephrine or placebo infusion. Anesthesiology 109:856–863

    PubMed  CAS  Google Scholar 

  • Lategola M, Rahn H (1953) A self-guiding catheter for cardiac and pulmonary arterial catheterization and occlusion. Proc Soc Exp Biol Med 84:667–668

    PubMed  CAS  Google Scholar 

  • Lavine SJ, Lavine JA (2006) The effect of acute hypertension on left ventricular diastolic pressures in a canine model of left ventricular dysfunction with a preserved ejection fraction and elevated left ventricular filling pressures. J Am Soc Echocardiogr 19:1350–1358

    PubMed  Google Scholar 

  • Lee AY, Kamphuisen PW (2012) Epidemiology and prevention of catheter-related thrombosis in patients with cancer. J Thromb Haemost 10:1491–1499

    PubMed  CAS  Google Scholar 

  • Lee AJ, Cohn JH, Ranasinghe JS (2011) Cardiac output assessed by invasive and minimally invasive techniques. Anesthesiol Res Pract 2011:475151

    PubMed  Google Scholar 

  • Leibowitz AB, Oropello JM (2007) The pulmonary artery catheter in anesthesia practice in 2007: an historical overview with emphasis on the past 6 years. Semin Cardiothorac Vasc Anesth 11:162–176

    PubMed  Google Scholar 

  • Levy RJ, Chiavacci RM, Nicolson SC, Rome JJ, Lin RJ, Helfaer MA, Nadkarni VM (2004) An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth Analg 99:1642–1647, table of contents

    PubMed  Google Scholar 

  • Li J (2012) Systemic oxygen transport derived by using continuous measured oxygen consumption after the Norwood procedure-an interim review. Interact Cardiovasc Thorac Surg 15:93–101

    PubMed  Google Scholar 

  • Liang SY, Khair H, Durkin MJ, Marschall J (2012) Prevention and management of central line-associated bloodstream infections in hospital practice. Hosp Pract (Minneap) 40:106–118

    Google Scholar 

  • Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–188

    PubMed  CAS  Google Scholar 

  • Linnemann B, Lindhoff-Last E (2012) Risk factors, management and primary prevention of thrombotic complications related to the use of central venous catheters. Vasa 41:319–332

    PubMed  Google Scholar 

  • Ludbrook GL, Russell WJ, Webb RK, Klepper ID, Currie M (1993) The Australian Incident Monitoring Study. The electrocardiograph: applications and limitations – an analysis of 2000 incident reports. Anaesth Intensive Care 21:558–564

    Google Scholar 

  • Mabee JR, Bostwick TL (1993) Pathophysiology and mechanisms of compartment syndrome. Orthop Rev 22:175–181

    PubMed  CAS  Google Scholar 

  • Mambelli E, Mancini E, Santoro A (2007) A continuous and non-invasive arterial pressure monitoring system in dialysis patients. Nephron Clin Pract 107:c170–c176

    PubMed  Google Scholar 

  • Mandel MA, Dauchot PJ (1977) Radial artery cannulation in 1,000 patients: precautions and complications. J Hand Surg Am 2:482–485

    PubMed  CAS  Google Scholar 

  • Manecke GR (2005) Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices 2:523–527

    PubMed  Google Scholar 

  • Manios E, Vemmos K, Tsivgoulis G, Barlas G, Koroboki E, Spengos K, Zakopoulos N (2007) Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke. Blood Press Monit 12:149–156

    PubMed  Google Scholar 

  • Manley L (2000) A look back: the sphygmomanometer. J Emerg Nurs 26:168

    PubMed  CAS  Google Scholar 

  • Mansfield PF, Hohn DC, Fornage BD, Gregurich MA, Ota DM (1994) Complications and failures of subclavian-vein catheterization. N Engl J Med 331:1735–1738

    PubMed  CAS  Google Scholar 

  • Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    PubMed  Google Scholar 

  • Marik PE, Flemmer M, Harrison W (2012) The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med 40:2479–2485

    PubMed  Google Scholar 

  • Masugata H, Peters B, Lafitte S, Strachan GM, Ohmori K, Mizushige K, Kohno M (2003) Assessment of adenosine-induced coronary steal in the setting of coronary occlusion based on the extent of opacification defects by myocardial contrast echocardiography. Angiology 54:443–448

    PubMed  Google Scholar 

  • Mathews L, Singh RK (2008) Cardiac output monitoring. Ann Card Anaesth 11:56–68

    PubMed  Google Scholar 

  • Matthay MA, Chatterjee K (1988) Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med 109:826–834

    PubMed  CAS  Google Scholar 

  • Mattoo TK (2002) Arm cuff in the measurement of blood pressure. Am J Hypertens 15:67S–68S

    PubMed  Google Scholar 

  • Mauck GW, Smith CR, Geddes LA, Bourland JD (1980) The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure–Part II. J Biomech Eng 102:28–33

    PubMed  CAS  Google Scholar 

  • Maurer MM, Burkhoff D, Maybaum S, Franco V, Vittorio TJ, Williams P, White L, Kamalakkannan G, Myers J, Mancini DM (2009) A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J Card Fail 15:689–699

    PubMed  Google Scholar 

  • Maxwell RA, Gibson JB, Slade JB, Fabian TC, Proctor KG (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 51:849–853

    PubMed  CAS  Google Scholar 

  • Mayer J, Suttner S (2009) Cardiac output derived from arterial pressure waveform. Curr Opin Anaesthesiol 22:804–808

    PubMed  Google Scholar 

  • McGee WT, Mailloux PT, Martin RT (2011) Safe placement of central venous catheters: a measured approach. J Intensive Care Med 26:392–396

    PubMed  Google Scholar 

  • McGhee BH, Bridges EJ (2002) Monitoring arterial blood pressure: what you may not know. Crit Care Nurse 22:60–64, 66–70, 73 passim

    PubMed  Google Scholar 

  • Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E, Rigaud JP, Casciani D, Misset B, Bosquet C, Outin H, Brun-Buisson C, Nitenberg G (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286:700–707

    PubMed  CAS  Google Scholar 

  • Meyer JA (1990) Werner Forssmann and catheterization of the heart, 1929. Ann Thorac Surg 49:497–499

    PubMed  CAS  Google Scholar 

  • Mielniczuk LM, Lamas GA, Flaker GC, Mitchell G, Smith SC, Gersh BJ, Solomon SD, Moye LA, Rouleau JL, Rutherford JD, Pfeffer MA (2007) Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest Heart Fail 13:209–214

    PubMed  Google Scholar 

  • Miller SE, Maragakis LL (2012) Central line-associated bloodstream infection prevention. Curr Opin Infect Dis 25:412–422

    PubMed  Google Scholar 

  • Missant C, Rex S, Wouters PF (2008) Accuracy of cardiac output measurements with pulse contour analysis (PulseCO) and Doppler echocardiography during off-pump coronary artery bypass grafting. Eur J Anaesthesiol 25:243–248

    PubMed  CAS  Google Scholar 

  • Mohr R, Meir O, Smolinsky A, Goor DA (1987) A method for continuous on-line monitoring of systemic vascular resistance (COMS) after open heart procedures. J Cardiovasc Surg (Torino) 28:558–565

    CAS  Google Scholar 

  • Monnet X, Richard C, Teboul JL (2004) The pulmonary artery catheter in critically ill patients. Does it change outcome? Minerva Anestesiol 70:219–224

    PubMed  CAS  Google Scholar 

  • Moran J (1990) Chapter 17: Pulse. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston. Available from: http://www.ncbi.nlm.nih.gov/books/NBK278/

  • Moshkovitz Y, Kaluski E, Milo O, Vered Z, Cotter G (2004) Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Curr Opin Cardiol 19:229–237

    PubMed  Google Scholar 

  • Movius AJ, Bratton SL, Sorensen GK (1998) Use of pulse oximetry for blood pressure measurement after cardiac surgery. Arch Dis Child 78:457–460

    PubMed  CAS  Google Scholar 

  • Mueller HS, Chatterjee K, Davis KB, Fifer MA, Franklin C, Greenberg MA, Labovitz AJ, Shah PK, Tuman KJ, Weil MH, Weintraub WS (1998) ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. American College of Cardiology. J Am Coll Cardiol 32:840–864

    PubMed  CAS  Google Scholar 

  • Murias GE, Villagra A, Vatua S, del Mar Fernandez M, Solar H, Ochagavia A, Fernandez R, Lopez Aguilar J, Romero PV, Blanch L (2002) Evaluation of a noninvasive method for cardiac output measurement in critical care patients. Intensive Care Med 28:1470–1474

    PubMed  Google Scholar 

  • Myers MG (2012) The great myth of office blood pressure measurement. J Hypertens 30:1894–1898

    PubMed  CAS  Google Scholar 

  • Myers MG, Godwin M (2007) Automated measurement of blood pressure in routine clinical practice. J Clin Hypertens (Greenwich) 9:267–270

    Google Scholar 

  • Myers MG, Godwin M (2012) Automated office blood pressure. Can J Cardiol 28:341–346

    PubMed  Google Scholar 

  • Myers MG, Valdivieso M (2012) Evaluation of an automated sphygmomanometer for use in the office setting. Blood Press Monit 17:116–119

    PubMed  Google Scholar 

  • Nichols WW, Denardo SJ, Wilkinson IB, McEniery CM, Cockcroft J, O’Rourke MF (2008) Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens (Greenwich) 10:295–303

    Google Scholar 

  • Nilsson LB, Eldrup N, Berthelsen PG (2001) Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand 45:680–685

    PubMed  CAS  Google Scholar 

  • Nossaman BD, Scruggs BA, Nossaman VE, Murthy SN, Kadowitz PJ (2010) History of right heart catheterization: 100 years of experimentation and methodology development. Cardiol Rev 18:94–101

    PubMed  Google Scholar 

  • O’Brien E (1998) Automated blood pressure measurement: state of the market in 1998 and the need for an international validation protocol for blood pressure measuring devices. Blood Press Monit 3:205–211

    PubMed  Google Scholar 

  • O’Brien E (2003) Demise of the mercury sphygmomanometer and the dawning of a new era in blood pressure measurement. Blood Press Monit 8:19–21

    PubMed  Google Scholar 

  • O’Rourke MF, Avolio AP (1980) Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. Circ Res 46:363–372

    PubMed  Google Scholar 

  • O’Rourke MF, Yaginuma T (1984) Wave reflections and the arterial pulse. Arch Intern Med 144:366–371

    PubMed  Google Scholar 

  • O’Rourke MF, Pauca A, Jiang XJ (2001) Pulse wave analysis. Br J Clin Pharmacol 51:507–522

    PubMed  Google Scholar 

  • Omar HR, Fathy A, Mangar D, Camporesi E (2010) Missing the guidewire: an avoidable complication. Int Arch Med 3:21

    PubMed  Google Scholar 

  • Oransky I, Jeremy H, Swan C (2005) Lancet 365:1132

    PubMed  Google Scholar 

  • Ostergaard M, Nielsen J, Rasmussen JP, Berthelsen PG (2006) Cardiac output–pulse contour analysis vs. pulmonary artery thermodilution. Acta Anaesthesiol Scand 50:1044–1049

    PubMed  CAS  Google Scholar 

  • Ouellette EA (1998) Compartment syndromes in obtunded patients. Hand Clin 14:431–450

    PubMed  CAS  Google Scholar 

  • Palatini P, Benetti E, Fania C, Malipiero G, Saladini F (2012) Rectangular cuffs may overestimate blood pressure in individuals with large conical arms. J Hypertens 30:530–536

    PubMed  CAS  Google Scholar 

  • Parati G, Mutti E, Ravogli A, Trazzi S, Villani A, Mancia G (1990) Advantages and disadvantages of non-invasive ambulatory blood pressure monitoring. J Hypertens Suppl 8:S33–S38

    PubMed  CAS  Google Scholar 

  • Parienti JJ, du Cheyron D, Timsit JF, Traore O, Kalfon P, Mimoz O, Mermel LA (2012) Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 40:1627–1634

    PubMed  Google Scholar 

  • Paskalev D, Kircheva A, Krivoshiev S (2005) A centenary of auscultatory blood pressure measurement: a tribute to Nikolai Korotkoff. Kidney Blood Press Res 28:259–263

    PubMed  Google Scholar 

  • Pavan MV, Saura GE, Korkes HA, Nascimento KM, Madeira Neto ND, Davila R, Rodrigues CI, Almeida FA (2012) Similarity between blood pressure values assessed by auscultatory method with mercury sphygmomanometer and automated oscillometric digital device. J Bras Nefrol 34:43–49

    PubMed  Google Scholar 

  • Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8:190–195

    PubMed  Google Scholar 

  • Peyton PJ, Chong SW (2010) Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology 113:1220–1235

    PubMed  Google Scholar 

  • Phillips R, Lichtenthal P, Sloniger J, Burstow D, West M, Copeland J (2009) Noninvasive cardiac output measurement in heart failure subjects on circulatory support. Anesth Analg 108:881–886

    PubMed  Google Scholar 

  • Phillips RA, Hood SG, Jacobson BM, West MJ, Wan L, May CN (2012) Pulmonary artery catheter (PAC) accuracy and efficacy compared with flow probe and transcutaneous Doppler (USCOM): an ovine cardiac output validation. Crit Care Res Pract 2012:621496

    PubMed  Google Scholar 

  • Pikwer A, Akeson J, Lindgren S (2012) Complications associated with peripheral or central routes for central venous cannulation. Anaesthesia 67:65–71

    PubMed  CAS  Google Scholar 

  • Pipanmekaporn T, Bunchungmongkol N, Pin on P, Punjasawadwong Y (2012) Impact of patients’ positions on the incidence of arrhythmias during pulmonary artery catheterization. J Cardiothorac Vasc Anesth 26:391–394

    PubMed  Google Scholar 

  • Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A (2007) Diastolic heart failure in anaesthesia and critical care. Br J Anaesth 98:707–721

    PubMed  CAS  Google Scholar 

  • Poelaert JI, Trouerbach J, De Buyzere M, Everaert J, Colardyn FA (1995) Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting. Chest 107:774–779

    PubMed  CAS  Google Scholar 

  • Porhomayon J, Zadeii G, Congello S, Nader ND (2012) Applications of minimally invasive cardiac output monitors. Int J Emerg Med 5:18

    PubMed  Google Scholar 

  • Posey JA, Geddes LA, Williams H, Moore AG (1969) The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure. 1. Cardiovasc Res Cent Bull 8:15–25

    PubMed  CAS  Google Scholar 

  • Proulx F, Lemson J, Choker G, Tibby SM (2011) Hemodynamic monitoring by transpulmonary thermodilution and pulse contour analysis in critically ill children. Pediatr Crit Care Med 12:459–466

    PubMed  Google Scholar 

  • Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2:CD003408

    PubMed  Google Scholar 

  • Ramaswamykanive H, Bihari DJ (2009) Entrapment of the introducing sheath of a pulmonary artery catheter. Anaesth Intensive Care 37:1025–1026

    PubMed  CAS  Google Scholar 

  • Ranganath A, Hanumanthaiah D (2011) Radial artery pseudo aneurysm after percutaneous cannulation using Seldinger technique. Indian J Anaesth 55:274–276

    PubMed  Google Scholar 

  • Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D (2008) Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput 22:113–119

    PubMed  Google Scholar 

  • Reed CR, Sessler CN, Glauser FL, Phelan BA (1995) Central venous catheter infections: concepts and controversies. Intensive Care Med 21:177–183

    PubMed  CAS  Google Scholar 

  • Reems MM, Aumann M (2012) Central venous pressure: principles, measurement, and interpretation. Compend Contin Educ Vet 34:E1–E10

    PubMed  Google Scholar 

  • Renner J, Scholz J, Bein B (2009) Monitoring fluid therapy. Best Pract Res Clin Anaesthesiol 23:159–171

    PubMed  Google Scholar 

  • Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK (2010) Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg 110:799–811

    PubMed  Google Scholar 

  • Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264

    PubMed  Google Scholar 

  • Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720

    PubMed  CAS  Google Scholar 

  • Richard C, Monnet X, Teboul JL (2011) Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care 17:296–302

    PubMed  Google Scholar 

  • Riva-Rocci S, Zanchetti A, Mancia G (1996) A new sphygmomanometer. Sphygmomanometric technique. J Hypertens 14:1–12

    PubMed  CAS  Google Scholar 

  • Roberts MA, Pilmore HL, Tonkin AM, Garg AX, Pascoe EM, Badve SV, Cass A, Ierino FL, Hawley CM (2012) Challenges in blood pressure measurement in patients treated with maintenance hemodialysis. Am J Kidney Dis 60:463–472

    PubMed  Google Scholar 

  • Roguin A (2006) Scipione Riva-Rocci and the men behind the mercury sphygmomanometer. Int J Clin Pract 60:73–79

    PubMed  CAS  Google Scholar 

  • Romagnoli S, Bevilacqua S, Lazzeri C, Ciappi F, Dini D, Pratesi C, Gensini GF, Romano SM (2009) Most Care®: a minimally invasive system for hemodynamic monitoring powered by the Pressure Recording Analytical Method (PRAM). HSR Proc Intensive Care Cardiovasc Anesth 1:20–27

    PubMed  CAS  Google Scholar 

  • Rudoff J, Ebner S, Canepa C (1994) Limb-compartmental syndrome with thrombolysis. Am Heart J 128:1267–1268

    PubMed  CAS  Google Scholar 

  • Runciman WB, Webb RK, Klepper ID, Lee R, Williamson JA, Barker L. 1993. The Australian Incident Monitoring Study. Crisis management--validation of an algorithm by analysis of 2000 incident reports. Anaesth Intensive Care 21:579-592

    Google Scholar 

  • Russell AE, Wing LM, Smith SA, Aylward PE, McRitchie RJ, Hassam RM, West MJ, Chalmers JP (1989) Optimal size of cuff bladder for indirect measurement of arterial pressure in adults. J Hypertens 7:607–613

    PubMed  CAS  Google Scholar 

  • Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    PubMed  Google Scholar 

  • Satler LF (2013) Iatrogenic pulmonary artery rupture: the realities of management. Catheter Cardiovasc Interv 81:60–61

    PubMed  Google Scholar 

  • Saul L, Smith J, Mook W (1998) The safety of automatic versus manual blood pressure cuffs for patients receiving thrombolytic therapy. Am J Crit Care 7:192–196

    PubMed  CAS  Google Scholar 

  • Scheer B, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6:199–204

    PubMed  Google Scholar 

  • Schima H, Boehm H, Huber L, Schmallegger H, Vollkron M, Hiesmayr M, Noisser R, Wieselthaler G (2004) Automatic system for noninvasive blood pressure determination in rotary pump recipients. Artif Organs 28:451–457

    PubMed  Google Scholar 

  • Schramm R, Abugameh A, Tscholl D, Schafers HJ (2009) Managing pulmonary artery catheter-induced pulmonary hemorrhage by bronchial occlusion. Ann Thorac Surg 88:284–287

    PubMed  Google Scholar 

  • Schwann NM, Hillel Z, Hoeft A, Barash P, Mohnle P, Miao Y, Mangano DT (2011) Lack of effectiveness of the pulmonary artery catheter in cardiac surgery. Anesth Analg 113:994–1002

    PubMed  Google Scholar 

  • Scolletta S, Franchi F, Taccone FS, Donadello K, Biagioli B, Vincent JL (2011) An uncalibrated pulse contour method to measure cardiac output during aortic counterpulsation. Anesth Analg 113:1389–1395

    PubMed  Google Scholar 

  • Segal LS, Adair DM (1990) Compartment syndrome of the triceps as a complication of thrombolytic therapy. Orthopedics 13:90–92

    PubMed  CAS  Google Scholar 

  • Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670

    PubMed  CAS  Google Scholar 

  • Sharma V, Singh A, Kansara B, Karlekar A (2011) Comparison of transthoracic electrical bioimpedance cardiac output measurement with thermodilution method in post coronary artery bypass graft patients. Ann Card Anaesth 14:104–110

    PubMed  Google Scholar 

  • Shevde K, Raab R, Lee P (1994) Decreasing the risk of pulmonary artery rupture with a pressure relief balloon. J Cardiothorac Vasc Anesth 8:30–34

    PubMed  CAS  Google Scholar 

  • Side CD, Gosling RG (1971) Non-surgical assessment of cardiac function. Nature 232:335–336

    PubMed  CAS  Google Scholar 

  • Singer M, Clarke J, Bennett ED (1989) Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med 17:447–452

    PubMed  CAS  Google Scholar 

  • Siradovic A, Stoll R, Kern F, Haertel M (1988) Optimizing puncture of the internal jugular vein. Effects and advantages of the Valsalva maneuver in catheterization. Anaesthesist 37:387–391

    PubMed  CAS  Google Scholar 

  • Sise MJ, Hollingsworth P, Brimm JE, Peters RM, Virgilio RW, Shackford SR (1981) Complications of the flow-directed pulmonary artery catheter: a prospective analysis in 219 patients. Crit Care Med 9:315–318

    PubMed  CAS  Google Scholar 

  • Siu L, Tucker A, Manikappa SK, Monagle J (2008) Does patient position influence Doppler signal quality from the USCOM ultrasonic cardiac output monitor? Anesth Analg 106:1798–1802

    PubMed  Google Scholar 

  • Sivarajan VB, Bohn D (2011) Monitoring of standard hemodynamic parameters: heart rate, systemic blood pressure, atrial pressure, pulse oximetry, and end-tidal CO2. Pediatr Crit Care Med 12:S2–S11

    PubMed  Google Scholar 

  • Smith BE, Madigan VM (2013) Non-invasive method for rapid bedside estimation of inotropy: theory and preliminary clinical validation. Br J Anaesth 111:580–588

    Google Scholar 

  • Stergiou GS, Kollias A, Destounis A, Tzamouranis D (2012) Automated blood pressure measurement in atrial fibrillation: a systematic review and meta-analysis. J Hypertens 30:2074–2082

    PubMed  CAS  Google Scholar 

  • Stevens K, McCabe C, Jones C, Ashcroft J, Harvey S, Rowan K (2005) The incremental cost effectiveness of withdrawing pulmonary artery catheters from routine use in critical care. Appl Health Econ Health Policy 4:257–264

    PubMed  Google Scholar 

  • Stirnemann JJ, Comte F, Samson A (2012) Density estimation of a biomedical variable subject to measurement error using an auxiliary set of replicate observations. Stat Med 31(30):4154–4163

    PubMed  CAS  Google Scholar 

  • Stone PA, Hass SM, Knackstedt KS, Jagannath P (2012) Malposition of a central venous catheter into the right internal mammary vein: review of complications of catheter misplacement. Vasc Endovascular Surg 46:187–189

    PubMed  Google Scholar 

  • Sumita S, Ujike Y, Namiki A, Watanabe H, Watanabe A, Satoh O (1995) Rupture of pulmonary artery induced by balloon occlusion pulmonary angiography. Intensive Care Med 21:79–81

    PubMed  CAS  Google Scholar 

  • Summerhill EM, Baram M (2005) Principles of pulmonary artery catheterization in the critically ill. Lung 183:209–219

    PubMed  Google Scholar 

  • Surov A, Wienke A, Carter JM, Stoevesandt D, Behrmann C, Spielmann RP, Werdan K, Buerke M (2009) Intravascular embolization of venous catheter–causes, clinical signs, and management: a systematic review. JPEN J Parenter Enteral Nutr 33:677–685

    PubMed  Google Scholar 

  • Swan HJ (2005) The pulmonary artery catheter in anesthesia practice. 1970. Anesthesiology 103:890–893

    PubMed  Google Scholar 

  • Swan HJ, Ganz W (1974) Letter: guidelines for use of balloon-tipped catheter. Am J Cardiol 34:119–120

    PubMed  CAS  Google Scholar 

  • Swan HJ, Ganz W (1975) Use of balloon flotation catheters in critically ill patients. Surg Clin North Am 55:501–509

    PubMed  CAS  Google Scholar 

  • Swan HJ, Ganz W (1979) Complications with flow-directed balloon-tipped catheters. Ann Intern Med 91:494

    PubMed  CAS  Google Scholar 

  • Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    PubMed  CAS  Google Scholar 

  • Takada M, Minami K, Murata T, Inoue C, Sudani T, Suzuki A, Yamamoto T (2010) Anesthetic management using the arterial pressure-based cardiac output monitor and a central venous oximetry catheter for tricuspid valve replacement in a patient receiving hemodialysis. Masui 59:1016–1020

    PubMed  Google Scholar 

  • Taylor HL, Tiede K (1952) A comparison of the estimation of the basal cardiac output from a linear formula and the cardiac index. J Clin Invest 31:209–216

    PubMed  CAS  Google Scholar 

  • Tesio F, De Baz H, Panarello G, Calianno G, Quaia P, Raimondi A, Schinella D (1994) Double catheterization of the internal jugular vein for hemodialysis: indications, techniques, and clinical results. Artif Organs 18:301–304

    PubMed  CAS  Google Scholar 

  • Trieschmann U, Kruessell M, Cate UT, Sreeram N (2008) Central venous catheters in children and neonates (part 2) – access via the internal jugular vein. Images Paediatr Cardiol 10:1–7

    Google Scholar 

  • Trof RJ, Danad I, Reilingh MW, Breukers RM, Groeneveld AB (2011) Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care 15:R73

    PubMed  Google Scholar 

  • Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE (2012) Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26:267–278

    PubMed  Google Scholar 

  • Trzebicki J, Lisik W, Blaszczyk B, Pacholczyk M, Fudalej M, Chmura A, Lazowski T (2011) Unexpected fatal right ventricular rupture during liver transplantation: case report. Ann Transplant 16:70–74

    PubMed  Google Scholar 

  • Turi G, Tordiglione P, Araimo F (2013) Case report: Anterior mediastinal central line malposition. Anesth Analg 117(1):123–125

    PubMed  Google Scholar 

  • Tyden H (1982) Cannulation of the internal jugular vein – 500 cases. Acta Anaesthesiol Scand 26:485–488

    PubMed  CAS  Google Scholar 

  • Uchida Y, Sakamoto M, Takahashi H, Matsuo Y, Funahashi H, Sasano H, Sobue K, Takeyama H (2011) Optimal prediction of the central venous catheter insertion depth on a routine chest x-ray. Nutrition 27:557–560

    PubMed  Google Scholar 

  • Uchino S, Bellomo R, Morimatsu H, Sugihara M, French C, Stephens D, Wendon J, Honore P, Mulder J, Turner A (2006) Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care 10:R174

    PubMed  Google Scholar 

  • Ultman JS, Bursztein S (1981) Analysis of error in the determination of respiratory gas exchange at varying FIO2. J Appl Physiol 50:210–216

    PubMed  CAS  Google Scholar 

  • Unal AE, Bayar S, Arat M, Ilhan O (2003) Malpositioning of Hickman catheters, left versus right sided attempts. Transfus Apher Sci 28:9–12

    PubMed  Google Scholar 

  • Urban T, Wappler F, Sakka SG (2011) Intra-arterial ECG leads of a positive P-wave potential during central venous catheterization. Anasthesiol Intensivmed Notfallmed Schmerzther 46:94–97

    PubMed  Google Scholar 

  • Urschel JD, Myerowitz PD (1993) Catheter-induced pulmonary artery rupture in the setting of cardiopulmonary bypass. Ann Thorac Surg 56:585–589

    PubMed  CAS  Google Scholar 

  • Uzun M, Erinc K, Kirilmaz A, Baysan O, Sag C, Kilicarslan F, Genc C, Karaeren H, Demirtas E (2004) A novel method to estimate pulmonary artery wedge pressure using the downslope of the Doppler mitral regurgitant velocity profile. Echocardiography 21:673–679

    PubMed  Google Scholar 

  • Vats HS (2012) Complications of catheters: tunneled and nontunneled. Adv Chronic Kidney Dis 19:188–194

    PubMed  Google Scholar 

  • Vender JS (2006) Pulmonary artery catheter utilization: the use, misuse, or abuse. J Cardiothorac Vasc Anesth 20:295–299

    PubMed  Google Scholar 

  • Verrij E, van Montfrans G, Bos WJ (2008) Reintroduction of Riva-Rocci measurements to determine systolic blood pressure? Neth J Med 66:480–482

    PubMed  CAS  Google Scholar 

  • Verrij EA, Nieuwenhuizen L, Bos WJ (2009) Raising the arm before cuff inflation increases the loudness of Korotkoff sounds. Blood Press Monit 14:268–273

    PubMed  Google Scholar 

  • Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J (2008) The pulmonary artery catheter: in medio virtus. Crit Care Med 36:3093–3096

    PubMed  Google Scholar 

  • Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M (2011) Clinical review: update on hemodynamic monitoring–a consensus of 16. Crit Care 15:229

    PubMed  Google Scholar 

  • Walser EM (2012) Venous access ports: indications, implantation technique, follow-up, and complications. Cardiovasc Intervent Radiol 35:751–764

    PubMed  Google Scholar 

  • Wax DB, Lin HM, Leibowitz AB (2011) Invasive and concomitant noninvasive intraoperative blood pressure monitoring: observed differences in measurements and associated therapeutic interventions. Anesthesiology 115:973–978

    PubMed  Google Scholar 

  • Westenskow DR, Silva FH (1993) Device to limit inflation of a pulmonary artery catheter balloon. Crit Care Med 21:1365–1368

    PubMed  CAS  Google Scholar 

  • Whalen P, Ream AK (1988) A quantitative evaluation of the Hewlett-Packard 78354A noninvasive blood pressure meter. J Clin Monit 4:21–30

    PubMed  CAS  Google Scholar 

  • Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224

    PubMed  Google Scholar 

  • Wiener F, Weil MH (1977) Cardiovascular monitoring in the medical intensive care unit. Med Instrum 11:268–273

    PubMed  CAS  Google Scholar 

  • Wilcox TA (2009) Catheter-related bloodstream infections. Semin Intervent Radiol 26:139–143

    PubMed  Google Scholar 

  • Williams L, Frenneaux M (2006) Diastolic ventricular interaction: from physiology to clinical practice. Nat Clin Pract Cardiovasc Med 3:368–376

    PubMed  Google Scholar 

  • Woodrow P (2002) Central venous catheters and central venous pressure. Nurs Stand 16:45–51; quiz 52

    PubMed  Google Scholar 

  • Xiang H, Liu Y, Li Y, Qin Y, Yu M (2012) Noninvasive measurement of beat-to-beat arterial blood pressure by the Korotkoff sound delay time. Blood Press Monit 17:35–41

    PubMed  Google Scholar 

  • Young BP, Low LL (2010) Noninvasive monitoring cardiac output using partial CO(2) rebreathing. Crit Care Clin 26:383–392, table of contents

    PubMed  CAS  Google Scholar 

  • Yu DT, Platt R, Lanken PN, Black E, Sands KE, Schwartz JS, Hibberd PL, Graman PS, Kahn KL, Snydman DR, Parsonnet J, Moore R, Bates DW (2003) Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med 31:2734–2741

    PubMed  Google Scholar 

  • Zarshenas Z, Sparschu RA (1994) Catheter placement and misplacement. Crit Care Clin 10:417–436

    PubMed  CAS  Google Scholar 

  • Zhou Q, Xiao W, An E, Zhou H, Yan M (2012) Effects of four different positive airway pressures on right internal jugular vein catheterisation. Eur J Anaesthesiol 29:223–228

    PubMed  Google Scholar 

  • Zuffi A, Biondi-Zoccai G, Colombo F (2010) Swan-Ganz-induced pulmonary artery rupture: management with stent graft implantation. Catheter Cardiovasc Interv 76:578–581

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dabbagh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabbagh, A. (2014). Cardiovascular Monitoring. In: Dabbagh, A., Esmailian, F., Aranki, S. (eds) Postoperative Critical Care for Cardiac Surgical Patients. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40418-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40418-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40417-7

  • Online ISBN: 978-3-642-40418-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics