Skip to main content

Fluid Management and Electrolyte Balance

  • Chapter
  • First Online:

Abstract

Cardiac surgery is responsible for profound modification in body water distribution, electrolyte plasma concentration, and acid–base balance. Maintaining fluid, electrolyte, and acid–base balance it must be taken into account the alterations due to anaesthesia, the effects of cardiac surgery together with patient’s comorbidities and physiological response to the surgical stress. However the ideal approach to perioperative fluid management in cardiac surgery is still debated. The debate involves the kind of fluid to use (crystalloids vs colloids, colloid vs colloid, balanced vs unbalance solutions) and the amount of fluid to administer (liberal vs restrictive). The goal-directed therapy seems to be the best choice to guide the quantity of fluid infused, potentially impacting on outcomes. Electrolytes are always modified after cardiac surgery. With respect to the past, the benefit of their administration (in particular calcium) has been discussed in literature. In this chapter, the basis of fluid and electrolyte management in cardiac surgery patient is explained, through understanding physiology and pathophysiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas SM, Hill AG (2008) Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 63:44–51

    CAS  PubMed  Google Scholar 

  • Adams HA (2007) Volumen und Flüssigkeitsersatz – Physiologie, Pharmakologie und klinischer Einsatz. Anästh Intensivmed 48:448–460

    Google Scholar 

  • Adamson JW (2008) New blood, old blood, or no blood? N Engl J Med 358:1295–1296

    CAS  PubMed  Google Scholar 

  • Agrò FE, Benedetto M (2013) Properties and composition of plasma substitutes. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Agrò FE, Vennari M (2013a) Physiology of body fluid compartments and body fluid movements. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Agrò FE, Vennari M (2013b) Clinical treatment: the right fluid in the right quantity. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Agrò FE, Fries D, Vennari M (2013a) Cardiac surgery. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Agrò FE, Fries D, Benedetto M (2013b) How to maintain and restore the balance: colloids. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Allhoff T, Lenhart FP (1993) Severe dextran-induced anaphylactic/anaphylactoid reaction in spite of hapten prophylaxis. Infusionsther Transfusionsmed 20:301–306

    CAS  PubMed  Google Scholar 

  • Allison KP, Gosling P, Jones S et al (1999) Randomized trial of hydroxyethyl starch versus gelatin for trauma resuscitation. J Trauma 47:1114–1121

    CAS  PubMed  Google Scholar 

  • Arieff AI, Llach F, Massry SG (1976) Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine 55:121–129

    CAS  PubMed  Google Scholar 

  • Arkilic CF, Taguchi A, Sharma N et al (2003) Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery 133:49–55

    PubMed  Google Scholar 

  • Arthurson G, Granath K, Thoren L et al (1964) The renal excretion of LMW dextran. Acta Clin Scand 127:543–551

    Google Scholar 

  • Atik M (1967) Dextran-40 and dextran-70, a review. Arch Surg 94:664–667

    CAS  PubMed  Google Scholar 

  • Auler JOJ, Galas F, Hajjar L et al (2008) Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg 106:1201–1206

    PubMed  Google Scholar 

  • Balogh Z, McKinley BA, Cocanour CS et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:633–642

    Google Scholar 

  • Bamboat ZM, Bordeianou L (2009) Perioperative fluid management. Clin Colon Rectal Surg 22(1):28–33

    PubMed  Google Scholar 

  • Baron JF (2000) Adverse effects of colloids on renal function. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine, 1st edn. Springer, Berlin

    Google Scholar 

  • Barron ME, Wilkes MM, Navickis RJ (2004) A systematic review of the comparative safety of colloids. Arch Surg 139:552–563

    CAS  PubMed  Google Scholar 

  • Base EM, Standl T, Lassnigg A et al (2011) Efficacy and safety of hydroxyethyl starch 6 % 130/0.4 in a balanced electrolyte solution (Volulyte) during cardiac surgery. J Cardiothorac Vasc Anesth 25(3):407–414

    CAS  PubMed  Google Scholar 

  • Becker B, Chappel D, Bruegger D et al (2010) Therapeutic strategies targeting the endothelial glycocalyx: acute deficit but great potential. Cardiovasc Res 87:300–310

    CAS  PubMed  Google Scholar 

  • Belloni L, Pisano A, Natale A et al (2008) Assessment of fluid responsiveness parameters for off-pump coronary artery bypass surgery: a comparison among LiDCO, transesophageal echocardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth 22:243–248

    PubMed  Google Scholar 

  • Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96:337–342

    PubMed  Google Scholar 

  • Benes J, Cytra I, Altmann P et al (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: result of prospective randomized study. Crit Care 14:R118

    PubMed  Google Scholar 

  • Bennett-Guerrero E, Kahn RA, Moskowitz DM et al (2002) Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery. Mt Sinai J Med 69:96–100

    PubMed  Google Scholar 

  • Bernard C (1865) Introdution à l’étude de la médecine expérimentale. Paris. Éditions Garnier-Flammarion, 1966, 318 pp. Collection: Texte intégral. Texte originalement publié en 1865

    Google Scholar 

  • Blasco V, Leone M, Antonini F et al (2008) Comparison of the novel hydroxyethyl starch 130/0.4 and hydroxyethyl starch 200/0.6 in brain-dead donor resuscitation on renal function after transplantation. Br J Anaesth 100:504–508

    CAS  PubMed  Google Scholar 

  • Bojar RM (2005) Early postoperative care. In: Bojar RM (ed) Manual of perioperative care in adult cardiac surgery, 4th edn. Blackwell Publishing Inc., Malden

    Google Scholar 

  • Booth J, Philips-Bute B, McCants C et al (2003) Low serum magnesium level predicts major adverse cardiac events after coronary artery bypass graft surgery. Am Heart J 145:1108–1113

    CAS  PubMed  Google Scholar 

  • Boyd DR, Mansberger AR Jr (1968) Serum water and osmolal changes in hemorrhagic shock: an experimental and clinical study. Am Surg 34:744–749

    CAS  PubMed  Google Scholar 

  • Brandstrup B (2006) Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol 20:265–283

    PubMed  Google Scholar 

  • Brandstrup B, Tønnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    PubMed  Google Scholar 

  • Breukers RM, de Wilde RBP, van den Berg PCM et al (2009a) Assessing fluid responses after coronary surgery: role of mathematical coupling of global end-diastolic volume to cardiac output measured by transpulmonary thermodilution. Eur J Anaesthesiol 26:954–960

    PubMed  Google Scholar 

  • Breukers RM, Trof RJ, de Wilde RBP et al (2009b) Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery. Eur J Cardiothorac Surg 35:62–68

    PubMed  Google Scholar 

  • Brock H, Gabriel C, Bibl D et al (2002) Monitoring intravascular volumes for postoperative volume therapy. Eur J Anaesthesiol 19:288–294

    CAS  PubMed  Google Scholar 

  • Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999

    CAS  PubMed  Google Scholar 

  • Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    CAS  PubMed  Google Scholar 

  • Buhre W, Buhre K, Kazmaier S et al (2001) Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol 18:662–667

    CAS  PubMed  Google Scholar 

  • Bunn F, Roberts I, Tasker R, Akpa E (2002) Hypertonic versus isotonic crystalloid for fluid resuscitation in critically ill patients (Cochrane Review). Cochrane Database Syst Rev. 2004;(3):CD002045

    Google Scholar 

  • Campbell IT, Baxter JN, Tweedie IE et al (1990) IV fluids during surgery. Br J Anaesth 65:726–729

    CAS  PubMed  Google Scholar 

  • Carl M, Alms A, Braun J et al (2000) Die intensivmedizinische Versorgung herzchirurgischer Patienten: Hämodynamisches Monitoring und Herz-Kreislauf-Therapie S3-Leitlinie der Deutschen Gesellschaft für Thorax-, Herz- und Gefäbchirurgie (DGTHG) und der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Thorac Cardiovasc Surg 55:130–148

    Google Scholar 

  • Cavallaro F, Sandroni C, Antonelli M (2008) Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol 74:123–135

    CAS  PubMed  Google Scholar 

  • Cervera AL, Moss G (1974) Crystalloid distribution following haemorrhage and haemodilution: mathematical model and prediction of optimum volumes for equilibration at normovolemia. J Trauma 14:506–520

    CAS  PubMed  Google Scholar 

  • Chan ST, Kapadia CR, Johnson AW et al (1983) Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg 70:36–39

    CAS  PubMed  Google Scholar 

  • Chappell D, Jacob M, Hofmann-Kiefer K et al (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740

    PubMed  Google Scholar 

  • Cheung AT, Savino JS, Weiss SJ et al (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81:376–387

    CAS  PubMed  Google Scholar 

  • Chytra I, Pradl R, Bosman R et al (2007) Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care 11(1):R24

    PubMed  Google Scholar 

  • Cittanova ML, LeBlanc I, Legendre C et al (1996) Effects of hydroxyethyl starch in braindead kidney donors on renal function in kidney-transplant recipients. Lancet 348:1620–1622

    CAS  PubMed  Google Scholar 

  • Dabbagh A, Rajaei S, Shamsolhrar M (2010) The effect of intravenous magnesium sulfate on acute postoperative bleeding in elective coronary artery bypass surgery. J Perianesth Nurs 25:290–295

    PubMed  Google Scholar 

  • Dart AB, Mutter TC, Ruth CA et al (2010) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 20(1), CD007594

    Google Scholar 

  • David J, Vivien B, Lecarpentier Y et al (2001) Extracellular calcium modulates the effects of protamine on rat myocardium. Anesth Analg 92:817–823

    CAS  PubMed  Google Scholar 

  • Davidson IJ (2006) Renal impact of fluid management with colloids: a comparative review. Eur J Anaesthesiol 23:721–738

    CAS  PubMed  Google Scholar 

  • DeJonge E, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29:1261–1267

    CAS  Google Scholar 

  • Deman A, Peeters P, Sennesael J (1999) Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipient. A retrospective, multicenter analysis. Nephrol Dial Transplant 14:1517–1520

    CAS  PubMed  Google Scholar 

  • DiCorte CJ, Latham P, Greilich PE et al (2000) Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg 69:1782–1786

    CAS  PubMed  Google Scholar 

  • Dieterich HJ, Weissmuller T, Rosenberger P et al (2006) Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med 34:1775–1782

    CAS  PubMed  Google Scholar 

  • Dietrich G, Orth D, Haupt W et al (1990) Primary hemostasis in hemodilution-infusion solutions. Infusionstherapie 17:214–216

    CAS  PubMed  Google Scholar 

  • Dongaonkar R, Stweart R, Geisller H, Laine G (2010) Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res 87:331–339

    CAS  PubMed  Google Scholar 

  • Dorje P, Adhikary G, Tempe DK (2000) Avoiding iatrogenic hyperchloremic acidosis: call for a new crystalloid fluid. Anesthesiology 92:625–626

    CAS  PubMed  Google Scholar 

  • Drt A, Mutter T, Ruth C et al (2010) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 1, CD007594

    Google Scholar 

  • Drummond JC, Petrovitch CT (2005) Intraoperative blood salvage: fluid replacement calculation. Anesth Analg 100:645–649

    PubMed  Google Scholar 

  • Dubois MJ, Vincent JL (2007) Colloid fluids. In: Hahn RG, Prough DS, Svensen CH (eds) Perioperative fluid therapy, 1st edn. Wiley, New York

    Google Scholar 

  • Ekery D, Davidoff R, Orlandi Q et al (2003) Imaging and diagnostic testing: dysfunction after coronary artery bypass grafting: a frequent finding of clinical significance not influenced by intravenous calcium. Am Heart J 145:896–902

    PubMed  Google Scholar 

  • England M, Gordon G, Salem M et al (1992) Magnesium administration and dysrhythmias after cardiac surgery. A placebo controlled double-blind randomized trial. JAMA 268:2395–2402

    CAS  PubMed  Google Scholar 

  • Ernest D, Belzberg AS, Dodek PM (2001) Distribution of normal saline and 5 % albumin infusions in cardiac surgical patients. Crit Care Med 29:2299–2302

    Google Scholar 

  • Fanzca RY (2012) Perioperative fluid and electrolyte management in cardiac surgery: a review. J Extra Corpor Technol 44:20–26

    Google Scholar 

  • Feng X, Yan W, Liu X et al (2006) Effects of hydroxyethyl starch 130/0.4 on pulmonary capillary leakage and cytokines production and nF-kappaB activation in ClP-induced sepsis in rats. J Surg Res 135:129–136

    CAS  PubMed  Google Scholar 

  • Fitzsimons M, Agnihotri A (2007) Hyponatremia and cardiopulmonary bypass. J Cardiothorac Vasc Anesth 86:1883–1887

    Google Scholar 

  • Fleck A, Raines G, Hawker F et al (1985) Increased vascular permeability. Major cause of hypoalbuminaemia in disease and injury. Lancet 1:781–783

    CAS  PubMed  Google Scholar 

  • Franz A, Bräunlich P, Gamsjäger T et al (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92:1402–1407

    CAS  PubMed  Google Scholar 

  • Gallandat Huet RCG, Siemons AW, Baus D et al (2000) A novel hydroxyethyl starch (VoluvenR) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth 47:1207–1215

    CAS  PubMed  Google Scholar 

  • Gamble J (1947) Chemical anatomy, physiology and pathology of extracellular fluid. Harvard University Press, Cambridge

    Google Scholar 

  • Gandhi SD, Weiskopf RB, Jungheinrich C et al (2007) Volume replacement therapy during major orthopedic surgery using Voluven® (hydroxyethyl starch 130/0.4) or hetastarch. Anesthesiology 106:1120–1127

    CAS  PubMed  Google Scholar 

  • Garcia L, Dejong S, Martin S et al (1998) Magnesium reduces free radicals in an in vivo coronary occlusion reperfusion model. J Am Coll Cardiol 32:536–539

    CAS  PubMed  Google Scholar 

  • Giglio MT, Marucci M, Testini M et al (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    CAS  PubMed  Google Scholar 

  • Goedje O, Seebauer T, Peyerl M et al (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118:775–781

    CAS  PubMed  Google Scholar 

  • Goepfer MS, Reuter DA, Akyiol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Google Scholar 

  • Goepfert MSG, Reuter DA, Akyol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    PubMed  Google Scholar 

  • Grathwohl KW, Bruns BJ, LeBrun CJ et al (1996) Does haemodilution exist? Effects of saline infusion on hematologic parameters in euvolemic subjects. South Med 89:51–55

    CAS  Google Scholar 

  • Grebe D, Sander M, von Heymann C et al (2006) Fluid therapy—pathophysiological principles as well as intra- and perioperative monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther 41:392–398

    PubMed  Google Scholar 

  • Greenfield RH, Bessen HA, Henneman PL (1989) Effect of crystalloid infusion on hematocrit and intravascular volume in healthy, no bleeding subjects. Ann Emerg Med 18:51–55

    CAS  PubMed  Google Scholar 

  • Gries A, Bode C, Gross S et al (1999) The effect of intravenously administered magnesium on platelet function in patient after cardiac surgery. Anesth Anal 88:1231–1239

    Google Scholar 

  • Grocott MP, Mythen MG, Gan TJ (2005) Perioperative fluid management and clinical outcomes in adults. Anesth Analg 100:1093–1106

    PubMed  Google Scholar 

  • Habicher M, Perrino AJ, Spies CD et al (2011) Contemporary fluid management in cardiac anesthesia. J Cardiothorac Vasc Anesth 25(6):1141–1153

    PubMed  Google Scholar 

  • Hahn RG, Drobin D, Stähle L (1997) Volume kinetics of Ringer’s solution in female volunteers. Br J Anaesth 78:144–148

    CAS  PubMed  Google Scholar 

  • Hauser CJ, Shoemaker WC, Turpin I et al (1980) Oxygen transport responses to colloids and crystalloids in critically ill surgical patients. Surg Obstet 150:811–816

    CAS  Google Scholar 

  • Haynes GH, Havidich JE, Payne KJ (2004) Why the food and drug administration changed the warning label for hetastarch. Anesthesiology 101:560–561

    PubMed  Google Scholar 

  • Hecth-Dolkin M, Barkan H, Tahara A et al (2009) Hetastarch increases the risk of bleeding complications in patients after off-pump coronary bypass surgery. J Thorac Cardiovasc Surg 138:703–711

    Google Scholar 

  • Hendry EB (1961) Osmolarity of human serum and of chemical solutions of biological importance. Clin Chem 7:156–164

    CAS  Google Scholar 

  • Herzog W, Schlossberg M, MacMurdy K et al (1995) Timing of magnesium therapy affects experimental infarct size. Circulation 92:2622–2626

    CAS  PubMed  Google Scholar 

  • Hiltebrand LB, Pestel G, Hager H et al (2007) Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon. Eur J Anaesthesiol 24:927–933

    CAS  PubMed  Google Scholar 

  • Hofer CK, Furrer L, Matter-Ensner S et al (2005a) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94:748–755

    CAS  PubMed  Google Scholar 

  • Hofer CK, Müller SM, Furrer L et al (2005b) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854

    PubMed  Google Scholar 

  • Hofer CK, Senn A, Weibel L et al (2008) Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac™ and PiCCOplus™ system. Crit Care 12:R82

    PubMed  Google Scholar 

  • Holte K, Kehlet H (2002) Compensatory fluid administration for preoperative dehydration: does it improve outcome? Acta Anaesthesiol Scand 46:1089–1093

    CAS  PubMed  Google Scholar 

  • Holte K, Klarskov B, Christensen DS et al (2004) Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized doubleblind study. Ann Surg 240:892–899

    PubMed  Google Scholar 

  • Holte K, Hahn RG, Ravn L et al (2007a) Influence of a “liberal” versus “restrictive” intraoperative fluid administration on elimination of a postoperative fluid load. Anesthesiology 106:75–79

    PubMed  Google Scholar 

  • Holte K, Foss NB, Andersen J et al (2007b) Liberal or restrictive fluid administration in fasttrack colonic surgery: a randomized, double-blind study. Br J Anaesth 99:500–508

    CAS  PubMed  Google Scholar 

  • Holtfreter B, Bandt C, Kuhn SO et al (2006) Serum osmolality and outcome in intensive care unit patients. Acta Anaesthesiol Scand 50:970–977

    CAS  PubMed  Google Scholar 

  • Hu X, Weinbaum S (1999) A new view of Starling’s hypothesis at the micro-structural level. Microvasc Res 58(3):281–304

    CAS  PubMed  Google Scholar 

  • Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S (2000) Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol 279(4):H1724–H1736

    CAS  PubMed  Google Scholar 

  • Hüter L, Simon TP, Weinmann L et al (2009) Hydroxyethyl starch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care 13:R23

    PubMed  Google Scholar 

  • Ickx BE, Bepperling F, Melot C et al (2003) Plasma substitution effects of a new hydroxyethyl starch HES 130/0.4 compared with HES 200/0.5 during and after extended acute normovolaemic haemodilution. Br J Anaesth 91:196–202

    CAS  PubMed  Google Scholar 

  • Iriz E, Kolbakir F, Akar H et al (2005) Comparison of hydroxyethyl starch and ringer as prime solution regarding S-100beta protein levels and informative cognitive tests in cerebral injury. Ann Thorac Surg 79:666–671

    PubMed  Google Scholar 

  • Jacob M, Chappel D, Conzen P et al (2008) Blood volume is normal after overnight fasting. Acta Anaesthesiol Scand 52:522–529

    CAS  PubMed  Google Scholar 

  • James MF, Latoo MY, Mythen MG et al (2004) Plasma volume changes associated with two hydroxyethyl starch colloids following acute hypovolaemia in volunteers. Anaesthesia 59:738–742

    CAS  PubMed  Google Scholar 

  • Järhult J (1973) Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand 89:213–226

    PubMed  Google Scholar 

  • Jarvela K, Koskinen M, Kaukinen S et al (2001) Effects of hypertonic saline (7.5 %) on extracellular fluid volumes compared with normal saline (0.9 %) and 6 % hydroxyethyl starch after aortocoronary bypass graft surgery. J Cardiothorac Vasc Anesth 15:210–215

    Google Scholar 

  • Jenkins MT, Giesecke AH, Johnson ER (1975) The postoperative patient and his fluid and electrolyte requirements. Br J Anaesth 47:143–150

    CAS  PubMed  Google Scholar 

  • Jones SB, Whitten CW, Monk TG (2004) Influence of crystalloid and colloid replacement solutions on hemodynamic variables during acute normovolemic hemodilution. J Clin Anesth 16:11–17

    CAS  PubMed  Google Scholar 

  • Jumgheinrich C, Scharpf R, Wargenau M et al (2002) The pharmacokinetics and tolerability of an intravenous infusion the new hydroxyethyl starch 130/04 (6 % 500 ml) in mild to severe renal impairment. Anaesth Analg 95:544–551

    Google Scholar 

  • Jungheinrich C, Scharpf R, Wargenau M et al (2002) The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6 %, 500 mL) in mild-to-severe renal impairment. Anesth Analg 95:544–551

    CAS  PubMed  Google Scholar 

  • Kaminski MV, Williams SD (1990) Review of the rapid normalization of serum albumin with modified total parenteral nutrition solutions. Crit Care Med 18:327–335

    PubMed  Google Scholar 

  • Kapoor PM, Kakani M, Chowdhury U et al (2008) Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth 11:27–34

    PubMed  Google Scholar 

  • Karanko MS, Klossner JA, Laaksonen VO (1987) Restoration of volume by crystalloid versus colloid after coronary artery bypass: hemodynamics, lung water, oxygenation, and outcome. Crit Care Med 15:559–566

    CAS  PubMed  Google Scholar 

  • Kastrup M, Markewitz A, Spies C et al (2007) Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand 51:347–358

    CAS  PubMed  Google Scholar 

  • Kenney PR, Allen-Rowlands CF, Gann DS (1983) Glucose and osmolality as predictors of injury severity. J Trauma 23:712–719

    CAS  PubMed  Google Scholar 

  • Kimura T, Yasue H, Sukaino N et al (1989) Effects of magnesium on isolated human coronary arteries. After CABG it has been shown as a predictor of major cardiac events. Circulation 79:118–124

    Google Scholar 

  • Kozek-Langenecker SA (2005) Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology 103:654–660

    PubMed  Google Scholar 

  • Kutschen F, Galletti P, Hahn C et al (1985) Alterations of insulin and glucose metabolism during cardiopulmonary bypass under normothermia. J Thorac Cardiovasc Surgery 89:97–106

    Google Scholar 

  • Lamke LO, Liljedahl SO (1976) Plasma volume changes after infusion of various plasma expanders. Resuscitation 5:93–102

    CAS  PubMed  Google Scholar 

  • Lamke LO, Nilsson G, Reithner H (1977) Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand 143:279–284

    CAS  PubMed  Google Scholar 

  • Lasks H, Standeven J, Balir O et al (1977) The effects of cardiopulmonary by-pass with crystalloid and colloid hemodilution on myocardial extravascular water. J Thorac Cardiovasc Surg 73:129–138

    Google Scholar 

  • Laxenaire M, Charpentier C, Feldman L (1994) Reactions anaphylactoides aux subitutes colloidaux du plasma: incidence, facteurs de risque, mecanismes. Ann Fr Anest Reanimat 13:301–310

    CAS  Google Scholar 

  • Lees N, Hamilton M, Rhodes A (2009) Clinical review: goal-directed therapy in high risk surgical patients. Crit Care 13:231. doi:10.1186/cc8039

    PubMed  Google Scholar 

  • Legendre C, Thervet E, Page B et al (1993) Hydroxyethyl starch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 342:248–249

    CAS  PubMed  Google Scholar 

  • Lehmann G, Marx G, Forster H (2007) Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs R & D 8:229–240

    CAS  Google Scholar 

  • Levick JR (2004) Revision of the Starling principle. New views of tissue fluid balance. J Physiol 557:704

    CAS  PubMed  Google Scholar 

  • Ley SJ, Miller K, Skov P et al (1990) Crystalloid versus colloid fluid therapy after cardiac surgery. Heart Lung 19:31–40

    CAS  PubMed  Google Scholar 

  • Lobo DN (2004) Sir David Cuthbertson medal lecture. Fluid, electrolytes and nutrition: physiological and clinical aspects. Proc Nutr Soc 63:453–466

    PubMed  Google Scholar 

  • Lobo DN, Allison SP (2005) Fluid, electrolyte and nutrient replacement. In: Burnand KG, Young AE, Lucas J et al (eds) The new aird’s companion in surgical studies, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  • Lobo DN, Stanga Z, Simpson JAD et al (2001) Dilution and redistribution effects of rapid 2- litre infusions of 0.9 % (w/v) saline and 5 % (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci (Lond) 101:173–179

    CAS  Google Scholar 

  • Lobo DN, Bostock KA, Neal KR et al (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359:1812–1818

    PubMed  Google Scholar 

  • Lobo DN, Stanga Z, Aloysius MM et al (2010) Effect of volume loading with 1 liter intravenous infusions of 0.9 % saline, 4 % succinylated gelatine (Gelofusine) and 6 % hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, threeway crossover study in healthy volunteers. Crit Care Med 38:464–470

    CAS  PubMed  Google Scholar 

  • Lopes MR, Oliveira MA, Pereira VO (2007) Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11:R100

    PubMed  Google Scholar 

  • Lowell JA, Schifferdecker C, Driscoll DF et al (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18:728–733

    CAS  PubMed  Google Scholar 

  • MacKay G, Fearon K, McConnachie A et al (2006) Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg 93:1469–1474

    CAS  PubMed  Google Scholar 

  • Madjdpour C, Dettori N, Frascarolo P et al (2005) Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics? Br J Anaesth 94:569–576

    CAS  PubMed  Google Scholar 

  • Maharaj CH, Kallam SR, Malik A et al (2005) Preoperative intravenous fluid therapy decreases postoperative nausea and pain in high risk patients. Anesth Analg 100:675–682

    CAS  PubMed  Google Scholar 

  • Mahmood A, Gosling P, Vohra RK (2007) Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatin during aortic aneurysm surgery. Br J Surg 94:427–433

    CAS  PubMed  Google Scholar 

  • Mahmood A, Gosling P, Barclay R et al (2009) Splanchnic microcirculation protection by hydroxyethyl starches during abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg 37:319–325

    CAS  PubMed  Google Scholar 

  • Makoff DL, da Silva JA, Rosenbaum BJ et al (1970) Hypertonic expansion: acid-base and electrolyte changes. Am J Physiol 218:1201–1207

    CAS  PubMed  Google Scholar 

  • Maningas PA, Bellamy RF (1986) Hypertonic sodium chloride solutions for the prehospital management of traumatic hemorrhagic shock: a possible improvement in the standard of care? Ann Emerg Med 15:1411–1414

    CAS  PubMed  Google Scholar 

  • Margarson MP, Soni N (1998) Serum albumin: touchstone or totem? Anaesthesia 53:789–803

    CAS  PubMed  Google Scholar 

  • Marik PE (1993) The treatment of hypoalbuminemia in the critically ill patient. Heart Lung 22:166–170

    CAS  PubMed  Google Scholar 

  • Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    PubMed  Google Scholar 

  • Marik PE, Cavallazzi R, Vasu T et al (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review. Crit Care Med 37:2642–2647

    PubMed  Google Scholar 

  • Marik PE, Cecconi M, Hofer CF (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15:214

    Google Scholar 

  • Martin G, Bennett-Guerrero E, Wakeling H et al (2002) A prospective, randomized comparison of thromboelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6 % hetastarch in a balanced-saline vehicle, or 6 % hydroxyethyl starch in saline during major surgery. J Cardiothorac Vasc Anesth 16:441–446

    CAS  PubMed  Google Scholar 

  • McIlroy DR, Kharasch ED (2003) Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg 96(6):1572–1577

    PubMed  Google Scholar 

  • McKendry M, McGloin H, Saberi D et al (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    PubMed  Google Scholar 

  • Metze D, Reimann S, Szepfalusi Z et al (1997) Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol 136:553–559

    CAS  PubMed  Google Scholar 

  • Michard F, Teboul J-L (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    PubMed  Google Scholar 

  • Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    PubMed  Google Scholar 

  • Mille S, Crystal E, Garfinkle K et al (2005) Effects of magnesium in atrial fibrillation after cardiac surgery: a meta analysis. Heart 91:618–623

    Google Scholar 

  • Miller RD (2009) Miller’s anesthesia, 7th edn. Churchill Livingstone, New York

    Google Scholar 

  • Mitra S, Khandelwal P (2009) Are all colloids same? How to select the right colloid? Indian J Anaesth 53(5):592

    PubMed  Google Scholar 

  • Moore FD, Steenburg RW, Ball MR et al (1955) Studies in surgical endocrinology. The urinary excretion of 17-hydroxycorticoids, and associated metabolic changes, in cases of soft tissue trauma of varying severity and in bone trauma. Ann Surg 141:145–174

    CAS  PubMed  Google Scholar 

  • Moran M, Kapsner C (1987) Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med 317:150–153

    CAS  PubMed  Google Scholar 

  • Morissette M, Weil MH, Shubin H (1975) Reduction in colloid osmotic pressure associated with fatal progression of cardiopulmonary failure. Crit Care Med 3:115–117

    CAS  PubMed  Google Scholar 

  • Moyer CA (1950) Acute temporary changes in renal function associated with major surgical procedures. Surgery 27:198–207

    CAS  PubMed  Google Scholar 

  • Mythen MG, Webb AR (1995) Preoperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130(4):423–429

    CAS  PubMed  Google Scholar 

  • Nadler SB, Hidalgo JU, Bloch T (1962) Prediction of blood volume in normal human adults. Surgery 51:224–232

    PubMed  Google Scholar 

  • Ng KFJ, Lam CCK, Chan IC (2002) In vivo effect of haemodilution with saline on coagulation: a randomized controlled tril. Br J Anaesth 88:475–480

    CAS  PubMed  Google Scholar 

  • Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI et al (2006) Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg 102:998–1006

    CAS  PubMed  Google Scholar 

  • Niemi T, Schramko A, Kuitunen A et al (2008) Haemodynamics and acid-base equilibrium after cardiac surgery: comparison of rapidly degradable hydroxyethyl starch solutions and albumin. Scand J Surg 97:259–265

    CAS  PubMed  Google Scholar 

  • Nisanevich V, Felsenstein I, Almogy G et al (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32

    PubMed  Google Scholar 

  • Nuevo FR, Vennari M, Agrò FE (2013) How to maintain and restore fluid balance: crystalloids. In: Agrò FE (ed) Body fluid management – from physiology to therapy, 1st edn. Springer, Milan

    Google Scholar 

  • Olsson J, Svensén CH, Hahn RG (2004) The volume kinetics of acetated Ringer’s solution during laparoscopic cholecystectomy. Anesth Analg 99:1854–1860

    PubMed  Google Scholar 

  • Ooi JS, Ramzisham AR, Zamrin MD (2009) Is 6 % hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery? Asian Cardiovasc Thorac Ann 17:368–372

    PubMed  Google Scholar 

  • Otsuki D, Fantoni D, Margarido C et al (2007) Hydroxyethyl starch is superior to ringer as a replacement fluid in pig model of acute normovolemic haemodilution. Br J Anaesth 98:29–37

    CAS  PubMed  Google Scholar 

  • Palumbo D, Servillo G, D’Amato L et al (2006) The effects of hydroxyethyl starch solution in critically ill patients. Minerva Anestesiol 72:655–664

    CAS  PubMed  Google Scholar 

  • Pearse R, Dawson D, Fawcett J et al (2005a) Changes in central venous saturation after major surgery, and association with outcome. Crit Care 9:R694–R699

    PubMed  Google Scholar 

  • Pearse R, Dawson D, Fawcett J et al (2005b) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    PubMed  Google Scholar 

  • Petty TL, Ashbaugh DG (1971) The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest 60(3):233–239

    CAS  PubMed  Google Scholar 

  • Polderman K, Girbes R (2004) Severe electrolyte disorders following cardiac surgery. A prospective controlled observational study. Crit Care 8:459.66

    Google Scholar 

  • Polonen P, Ruokonen E, Hippelainen M et al (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    CAS  PubMed  Google Scholar 

  • Powell-Tuck J, Gosling P, Lobo DN et al (2008) British consensus guidelines on intravenous fluid therapy for adult surgical patients. GIFTASUP. Crit Care Med 2008;36:1323–1329. Available from http://www.bapen.org.uk/pdfs/bapen_pubs/giftasup.pdf. Accessed 1 Apr 2010

  • Pradeep A, Rajagopalam S, Kolli HK et al (2010) High volumes of intravenous fluid during cardiac surgery are associated with increased mortality. HSR Proc Intensive Care Cardiovasc Anesth 2:287–296

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Sperandi M, Gaehtgens P (1998) Blood flow resistance during hemodilution. Effect of plasma composition. Cardiovasc Res 37:225–235

    CAS  PubMed  Google Scholar 

  • Rackow E, Fein AI, Leppo J (1977) Colloid osmotic pressure as a prognostic indicator of pulmonary oedema and mortality in the critically ill. Chest 72:709–713

    CAS  PubMed  Google Scholar 

  • Rackow EC, Falk JL, Fein IA et al (1983) Fluid resuscitation in circulatory shock: a comparison of the cardio-respiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850

    CAS  PubMed  Google Scholar 

  • Raja SG, Akhtar S, Shahbaz Y et al (2011) In cardiac surgery patients does Voluven® impair coagulation less than other colloids? Interact Cardiovasc Thorac Surg 12:1022–1027

    PubMed  Google Scholar 

  • Rajnish KJ et al (2004) Albumin: an overview of its place in current clinical practice. Indian J Anaesth 53:592–607

    Google Scholar 

  • Ravn H, Moeldrup U, Brookes C et al (1999) Intravenous magnesium reduces infarct size after ischemia/reperfusion injury combined with a thrombogenic lesion in the left anterior descending artery. Arterioscler Thromb Vasc Biol 19:569–574

    CAS  PubMed  Google Scholar 

  • Rehm M, Haller M, Orth V et al (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5 % albumin or 6 % hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856

    CAS  PubMed  Google Scholar 

  • Rehm M, Zahler S, Lotsc M et al (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6 % hydroxyethyl starch or 5 % albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223

    CAS  PubMed  Google Scholar 

  • Rehm R, Bruegger D, Christ F et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906

    CAS  PubMed  Google Scholar 

  • Reid F, Lobo DN, Williams RN et al (2003) (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci 104:17–24

    CAS  PubMed  Google Scholar 

  • Reuter DA, Felbinger TW, Moerstedt K et al (2002a) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195

    PubMed  Google Scholar 

  • Reuter DA, Felbinger TW, Kilger E et al (2002b) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth 88:124–126

    CAS  PubMed  Google Scholar 

  • Reuter DA, Bayerlein J, Goepfert MS et al (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    PubMed  Google Scholar 

  • Reuter DA, Huang C, Edrich T et al (2010) Cardiac output monitoring using indicator dilution techniques: basic, limits and perspectives. Anesth Analg 110:799–811

    PubMed  Google Scholar 

  • Roberts JS, Bratton SL (1998) Colloid volume expanders. Problems, pitfalls and possibilities. Drugs 55(5):621–630

    CAS  PubMed  Google Scholar 

  • Roche AM, James MF, Grocott MP et al (2002) Coagulation effects of in vitro serial haemodilution with a balanced electrolyte hetastarch solution compared with a saline-based hetastarch solution and lactated Ringer’s solution. Anaesthesia 57:950–955

    CAS  PubMed  Google Scholar 

  • Rubin H, Carlson S, DeMeo M et al (1997) Randomized, double-blind study of intravenous human albumin in hypoalbuminemic patients receiving total parenteral nutrition. Crit Care Med 25:249–252

    CAS  PubMed  Google Scholar 

  • Russell JA, Navickis RJ, Wilkes MM (2004) Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth 18:429–437

    CAS  PubMed  Google Scholar 

  • Ruttmann TG, James MFM, Lombard EM et al (2001) Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to predilution concentration. Anaesth Intensive Care 29:489–493

    CAS  PubMed  Google Scholar 

  • Ruttmann TG, James MFM, Finlayson J et al (2002) Effects on coagulation of intravenous crystalloid or colloid in patients undergoing peripheral vascular surgery. Br J Anaesth 89:226–230

    CAS  PubMed  Google Scholar 

  • SAFE Study Investigators, Finfer S, McEvoy S et al (2011) Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med 37(1):86–96

    PubMed  Google Scholar 

  • Sakka SG, Becher L, Kozieras J et al (2009) Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol 26:322–327

    PubMed  Google Scholar 

  • Sakr Y, Payen D, Reinhart K et al (2007) Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth 98:216–224

    CAS  PubMed  Google Scholar 

  • Sanfelippo MJ, Suberviola PD, Geimer NF (1987) Development of a von Willebrand-like syndrome after prolonged use of hydroxyethyl starch. Am J Clin Pathol 88:653–655

    CAS  PubMed  Google Scholar 

  • Scharbert G, Deusch E, Kress HG et al (2004) Inhibition of platelet function by hydroxyethyl starch solutions in chronic pain patients undergoing peridural anesthesia. Anesth Analg 99:823–827

    CAS  PubMed  Google Scholar 

  • Schell RM, Applegate RL, Cole DJ (1996) Salt, starch, and water on the brain. J Neurosurg Anesthesiol 18:179–182

    Google Scholar 

  • Schortgen F, Lacherade JC, Bruneel F et al (2001) Effects of hydroxyethyl starch and gelatin on renal function in severe sepsis: a multicenter randomized study. Lancet 357:911–916

    CAS  PubMed  Google Scholar 

  • Shandall A, Lowndes R, Young HL (1985) Colonic anastomotic healing and oxygen tension. Br J Surg 72:606–609

    CAS  PubMed  Google Scholar 

  • Sheridan WG, Lowndes RH, Young HL (1987) Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum 30:867–871

    CAS  PubMed  Google Scholar 

  • Shires T, Williams J, Borwn F (1961) Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 154:803–810

    CAS  PubMed  Google Scholar 

  • Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    CAS  PubMed  Google Scholar 

  • Sirvinskas E, Sneider E, Svagzdiene M et al (2007) Hypertonic hydroxyethyl starch solution for hypovolaemia correction following heart surgery. Perfusion 22:121–127

    PubMed  Google Scholar 

  • Smetkin AA, Kirov MY, Kuzkov VV et al (2009) Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand 53:505–514

    CAS  PubMed  Google Scholar 

  • Solanke TF, Khwaja MS, Kadomemu EL (1971) Plasma volume studies with four different plasma volume expanders. J Surg Res 11:140–143

    CAS  PubMed  Google Scholar 

  • Stein L, Berand J, Morisette M (1975) Pulmonary edema during volume infusion. Circulation 52:483–489

    CAS  PubMed  Google Scholar 

  • Stephens R, Mythen M (2003) Optimizing intraoperative fluid therapy. Curr Opin Anaesthesiol 16:385–392

    PubMed  Google Scholar 

  • Stögermüller B, Stark J, Willschke H et al (2000) The effect of hydroxyethyl starch 200 kD on platelet function. Anesth Analg 91:823–827

    PubMed  Google Scholar 

  • Strauss RG, Pennell BJ, Stump DC (2002) A randomized, blinded trial comparing the hemostatic effects of pentastarch versus hetastarch. Transfusion 42:27–36

    CAS  PubMed  Google Scholar 

  • Takil A, Eti Z, Irmak P et al (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated Ringer’s solution during major spine surgery. Anesth Analg 95:294–298

    CAS  PubMed  Google Scholar 

  • Tatara T, Tashiro C (2007) Quantitative analysis of fluid balance during abdominal surgery. Anesth Analg 104:347–354

    PubMed  Google Scholar 

  • Tian J, Lin X, Guan R et al (2004) The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg 98:768–774

    CAS  PubMed  Google Scholar 

  • Tobias MD, Wambold D, Pilla MA et al (1998) Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9 % saline on whole blood coagulation. J Clin Anesth 8:366–371

    Google Scholar 

  • Tommasino C, Moore S, Todd MM (1988) Cerebral effects of isovolemic hemodilution with crystalloid or colloid solutions. Crit Care Med 16:862–868

    CAS  PubMed  Google Scholar 

  • Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    CAS  PubMed  Google Scholar 

  • Traumer LD, Brazeal BA, Schmitz M et al (1992) Pentafraction reduces the lung lymph response after endotoxin administration in the ovine model. Circ Shock 36:93–96

    Google Scholar 

  • Treib J, Baron JF, Grauer MT et al (1999) An international view of hydroxyethyl starches. Intensive Care Med 25:258–268

    CAS  PubMed  Google Scholar 

  • Van den Berg B, Vink H, Spaan J (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594

    PubMed  Google Scholar 

  • Van der Linden PJ, De Hert SG, Daper A et al (2004) 3.5 % urea-linked gelatin is as effective as 6 % HES 200/0.5 for volume management min cardiac surgery patients. Can J Anaesth 51:236–241

    PubMed  Google Scholar 

  • Van der Linden PJ, De Hert SG, Deraedt D et al (2005) Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: the effects on perioperative bleeding and transfusion needs. Anesth Analg 101:629–634

    PubMed  Google Scholar 

  • Varadhan KK, Lobo DN (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69:488–498

    PubMed  Google Scholar 

  • Verheij J, van Lingen A, Raijmakers PGHM et al (2006a) Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth 96:21–30

    CAS  PubMed  Google Scholar 

  • Verheij J, van Lingen A, Beishuizen A et al (2006b) Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med 32:1030–1038

    CAS  PubMed  Google Scholar 

  • Vermeulen H, Hofland J, Legemate DA et al (2009) Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial. Trials 10:50

    PubMed  Google Scholar 

  • Vincent JL, Dubois MJ, Navickis RJ et al (2003) Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg 237:319–334

    PubMed  Google Scholar 

  • Voet D, Voet JG, Pratt CW (2001) Fundamentals of biochemistry. Wiley, New York

    Google Scholar 

  • Vretzakis G, Kleitsaki A, Aretha D, Karanikolas M (2011) Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery. Heart Surg Forum 14:E28–E39

    PubMed  Google Scholar 

  • Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN (1997) Efficacy of hypertonic 7.5 % saline and 6 % dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery 122:609–616

    CAS  PubMed  Google Scholar 

  • Waitzinger J, Bepperling F, Pabst G et al (2003) Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10 % solution in healthy volunteers. Drugs R & D 4:149–157

    CAS  Google Scholar 

  • Watenpaugh DE, Yancy CW, Buckey JC et al (1992) Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion. J Appl Physiol 73:1218–1226

    CAS  PubMed  Google Scholar 

  • Wiedermann CJ (2008) Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emerg Med 8:1

    PubMed  Google Scholar 

  • Wiesenack C, Prasser C, Keyl C et al (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15:584–588

    CAS  PubMed  Google Scholar 

  • Wiesenack C, Prasser C, Rodig G et al (2003) Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg 96:1254–1257

    PubMed  Google Scholar 

  • Wiesenack C, Fiegl C, Keyser A et al (2005) Continuously assessed right ventricular end diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care 9:R226–R233

    PubMed  Google Scholar 

  • Wilkes NJ, Woolf R, Mutch M et al (2001) The effect of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816

    CAS  PubMed  Google Scholar 

  • Williams EL, Hildebrand KL, McCormick SA et al (1999) The effect of intravenous lactated Ringer’s solution versus 0.9 % sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 88:999–1003

    CAS  PubMed  Google Scholar 

  • Wittkowski U, Spies C, Sander M et al (2009) Haemodynamic monitoring in the perioperative phase. Available systems, practical application and clinical data. Anaesthesist 58:764–778–780–766

    PubMed  Google Scholar 

  • Zaloga G, Strikland R, Butterworth J et al (1990) Calcium attenuates epinephrine’s betaadrenergic effects in postoperative surgery patients. Circulation 81:196–200

    CAS  PubMed  Google Scholar 

  • Zander R (2009) Fluid management. Bibliomed, Medizinische Verlagsgesellschaft mbH, Melsungen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Eugenio Agrò MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agrò, F.E., Vennari, M., Benedetto, M. (2014). Fluid Management and Electrolyte Balance. In: Dabbagh, A., Esmailian, F., Aranki, S. (eds) Postoperative Critical Care for Cardiac Surgical Patients. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40418-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40418-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40417-7

  • Online ISBN: 978-3-642-40418-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics