Skip to main content

US Elastography: Applications in Tumors

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Ultrasound elastography is a new technique that generates images based on the stiffness of tissue as opposed to anatomy. Many disease states have changes in stiffness that can be detected by elastography. There are two elastography techniques presently available, strain and shear wave imaging.

Breast pathology is extremely sensitive and specific for characterization using elastography. There is a unique elastography characteristic of breast masses where the lesions appear larger than on B-mode if malignant and smaller if benign. This change does not appear to occur in other organs. Focal liver masses have a mixed appearance on elastography with a large overlap in the stiffness of benign and malignant lesion making characterization of focal liver masses problematic with elastography. However, diffuse liver disease such as fibrosis can be graded and monitored with shear wave elastography. Although early in its development detection of prostate cancer in the peripheral zone by elastography appears very sensitive and specific. It has a very high negative predictive value that may limit the number of biopsies performed to detect prostate cancer. Elastography can be used in the evaluation of cystic lesions. A unique artifact occurs with strain imaging on some vendor equipment that is highly specific and sensitive for characterization of benign simple and complicated cysts. Shear waves do not propagate in simple fluid. Initial studies suggest shear wave imaging may be helpful in characterization of cystic lesion as serous or mucinous in nature. Initial results in thyroid, pancreas, lymph nodes, and testicular masses are promising. There has not been little evaluation in gynecological or musculoskeletal tumors to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPH:

Benign prostatic hypertrophy

CEUS:

Contrast-enhanced ultrasound

DRE:

Digital rectal exam

FOV:

Field of view

kPa:

Kilopascals

M/s:

Meters per second

MRS:

Magnetic resonance spectroscopy

PC:

Prostate cancer

PSA:

Prostate-specific antigen

SE:

Strain elastography

SWE:

Shear wave imaging

References

  1. Emerson K. Diseases of the breast. In: Thorn W, Wintrobe MM, Adams RD, editors. Principals of internal medicine. 7th ed. New York: McGraw-Hill; 1974. p. 582–7.

    Google Scholar 

  2. Barr R. Breast. In: Calliada M, Calliada F, Ferraiolo G, Filice C, editors. Sono-elastography main clinical applications. Pavia: Edizioni Medico Scientifiche; 2012. p. 49–68.

    Google Scholar 

  3. Barr RG. Shear wave imaging of the breast: still on the learning curve. J Ultrasound Med. 2012;31(3):347–50.

    PubMed  Google Scholar 

  4. Barr RG. Sonographic breast elastography: a primer. J Ultrasound Med. 2012;31(5):773–83.

    PubMed  Google Scholar 

  5. Barr RG, Zhang Z. Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med. 2012;31(6):895–902.

    PubMed  Google Scholar 

  6. Fahey BJ, et al. Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol. 2005;31(9):1185–98.

    Article  PubMed  Google Scholar 

  7. Nightingale K, et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35.

    Article  PubMed  Google Scholar 

  8. Rouze NC, et al. Robust estimation of time-of-flight shearwave speed using a radon sum transformation. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:2662–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cosgrove DO, et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol. 2012;22(5):1023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bluemke DA, et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA. 2004;292(22):2735–42.

    Article  PubMed  CAS  Google Scholar 

  11. Morrow M. Magnetic resonance imaging in breast cancer: one step forward, two steps back? JAMA. 2004;292(22):2779–80.

    Article  PubMed  CAS  Google Scholar 

  12. Hilton SV, et al. Real-time breast sonography: application in 300 consecutive patients. AJR Am J Roentgenol. 1986;147(3):479–86.

    Article  PubMed  CAS  Google Scholar 

  13. Jellins J, et al. Detection and classification of liquid-filled masses in the breast by gray scale echography. Radiology. 1977;125(1):205–12.

    PubMed  CAS  Google Scholar 

  14. Stavros AT, et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196(1):123–34.

    PubMed  CAS  Google Scholar 

  15. ACR. American College of Radiology Breast Imaging Reporting and Data System (BIRADS) Ultrasound. 4th ed. 1st ed. Reston: American College of Radiology; 2003.

    Google Scholar 

  16. Tanter M, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34(9):1373–86.

    Article  PubMed  Google Scholar 

  17. Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43(10):850–5.

    Article  PubMed  CAS  Google Scholar 

  18. Ophir J, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    PubMed  CAS  Google Scholar 

  19. Samani A, et al. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52(6):1565–76.

    Article  PubMed  Google Scholar 

  20. Krouskop TA, et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.

    Article  PubMed  CAS  Google Scholar 

  21. Hall TJ, et al. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29(3):427–35.

    Article  PubMed  Google Scholar 

  22. Barr RG. Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q. 2010;26(2):61–6.

    Article  PubMed  Google Scholar 

  23. Barr RG, et al. Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial. J Ultrasound Med. 2012;31(2):281–7.

    PubMed  Google Scholar 

  24. Itoh A, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  25. Ueno EIA. Diagnosis of breast cancer by elasticity imaging. Eizo Joho Med. 2004;36:2–6.

    Google Scholar 

  26. Park JS, Moon WK. Inter and intraobserver agreement in the interpretation of ultrasound elastography of breast lesions. Paper presented at Radiological Society of North America 93rd scientific assembly and annual meeting, Chicago; 2007.

    Google Scholar 

  27. Chiorean A, et al. Short analysis on elastographic images of benign and malignant breast lesions based on color and hue parameters. Ultraschall Med. 2008;Suppl 1:OP2.13.

    Google Scholar 

  28. Chiorean AD, et al. Real-time ultrasound elastography of the breast: state of the art. Med Ultrason. 2008;10:73–82.

    Google Scholar 

  29. Duma M, et al. Breast Lesions: correlations between ultrasound BI-RADS classification and UENO-ITOH elastography score. Ultraschall Med. 2008;Suppl 1:OP2.12.

    Google Scholar 

  30. Cho N, et al. Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol. 2008;9(2):111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scaperrotta G, et al. Role of sonoelastography in non-palpable breast lesions. Eur Radiol. 2008;18(11):2381–9.

    Article  PubMed  Google Scholar 

  32. Tan SM, et al. Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography–a clinical approach. Breast. 2008;17(3):252–7.

    Article  PubMed  CAS  Google Scholar 

  33. Zhi H, et al. Semi-quantitating stiffness of breast solid lesions in ultrasonic elastography. Acad Radiol. 2008;15(11):1347–53.

    Article  PubMed  Google Scholar 

  34. Zhu QL, et al. Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol. 2008;34(8):1232–8.

    Article  PubMed  Google Scholar 

  35. Thomas A, et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17(5):558–63.

    Article  PubMed  Google Scholar 

  36. Waki K, et al. Investigation of strain ratio using ultrasound elastography technique. Paper presented at proceedings of isicE 2007, Kitakyushu. 2007.

    Google Scholar 

  37. Zhi H, et al. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17(10):1227–33.

    Article  PubMed  Google Scholar 

  38. Ueno E, et al. New quantitative method in breast elastography: fat lesion ratio (FLR). Paper presented at Radiological Society of North America 93rd scientific assembly and annual meeting, Chicago, 25–30 Nov 2007.

    Google Scholar 

  39. Barr RG, Lackey AE. The utility of the “bull’s-eye” artifact on breast elasticity imaging in reducing breast lesion biopsy rate. Ultrasound Q. 2011;27(3):151–5.

    Article  PubMed  Google Scholar 

  40. Nakashima K, Moriya T. Comprehensive ultrasound diagnosis for intraductal spread of primary breast cancer. Breast Cancer. 2013;20(1):3–12.

    Article  PubMed  Google Scholar 

  41. Berg WA, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435–49.

    Article  PubMed  Google Scholar 

  42. Chang JM, et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat. 2011;129(1):89–97.

    Article  PubMed  Google Scholar 

  43. Athanasiou A, et al. Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology. 2010;256(1):297–303.

    Article  PubMed  Google Scholar 

  44. Evans A, et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 2010;12(6):R104.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bai M, et al. Virtual touch tissue quantification using acoustic radiation force impulse technology: initial clinical experience with solid breast masses. J Ultrasound Med. 2012;31(2):289–94.

    PubMed  Google Scholar 

  46. Yu H, Wilson SR. Differentiation of benign from malignant liver masses with acoustic radiation force impulse technique. Ultrasound Q. 2011;27(4):217–23.

    Article  PubMed  Google Scholar 

  47. Seeff LB, Hoofnagle JH. National Institutes of Health Consensus Development Conference: management of hepatitis C: 2002. Hepatology. 2002;36(5 Suppl 1):S1–2.

    Article  PubMed  Google Scholar 

  48. Ferraioli G, et al. Diffuse liver diseases. In: Calliada F, Canepari M, Ferraiolo G, Filice C, editors. Sono-elastography main clinical applications. Pavia: Edizioni Medico Scientifiche; 2012.

    Google Scholar 

  49. Yu H, Wilson SR. New noninvasive ultrasound techniques: can they predict liver cirrhosis? Ultrasound Q. 2012;28(1):5–11.

    Article  PubMed  Google Scholar 

  50. American Cancer Society. Cancer facts & figures. Atlanta: ACS; 2010.

    Google Scholar 

  51. Catalona WJ, et al. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA. 1997;277(18):1452–5.

    Article  PubMed  CAS  Google Scholar 

  52. Gormley GJ, et al. Effect of Finasteride on prostate-specific antigen density. Urology. 1994;43(1):53–8; discussion 58–9.

    Article  PubMed  CAS  Google Scholar 

  53. Crawford ED. Prostate cancer awareness week: September 22 to 28, 1997. CA Cancer J Clin. 1997;47(5):288–96.

    Article  PubMed  CAS  Google Scholar 

  54. Cookson MM. Prostate cancer: screening and early detection. Cancer Control. 2001;8(2):133–40.

    PubMed  CAS  Google Scholar 

  55. Stroumbakis N, et al. Clinical significance of repeat sextant biopsies in prostate cancer patients. Urology. 1997;49(3A Suppl):113–8.

    Article  PubMed  CAS  Google Scholar 

  56. Kwek JW, et al. Phased-array magnetic resonance imaging of the prostate with correlation to radical prostatectomy specimens: local experience. Asian J Surg. 2004;27(3):219–24; discussion 225–6.

    Article  PubMed  Google Scholar 

  57. Nakashima J, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004;64(1):101–5.

    Article  PubMed  Google Scholar 

  58. Zakian KL, et al. Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.

    Article  PubMed  Google Scholar 

  59. Futterer JJ, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006;241(2):449–58.

    Article  PubMed  Google Scholar 

  60. Girouin N, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol. 2007;17(6):1498–509.

    Article  PubMed  Google Scholar 

  61. Lemaitre L, et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol. 2009;19(2):470–80.

    Article  PubMed  Google Scholar 

  62. Lim HK, et al. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection–a multireader study. Radiology. 2009;250(1):145–51.

    Article  PubMed  Google Scholar 

  63. Villers A, et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176(6 Pt 1):2432–7.

    Article  PubMed  Google Scholar 

  64. Wink M, et al. Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur Urol. 2008;54(5):982–92.

    Article  PubMed  Google Scholar 

  65. Amin M, et al. Zonal anatomy of the prostate. Annuals of KEMU. 2010;16:3.

    Google Scholar 

  66. Kapoor A, et al. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37(9):1374–81.

    Article  PubMed  Google Scholar 

  67. Aigner F, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184(3):913–7.

    Article  PubMed  Google Scholar 

  68. Kamoi K, et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol. 2008;34(7):1025–32.

    Article  PubMed  Google Scholar 

  69. Barr RG, et al. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28(1):13–20.

    Article  PubMed  Google Scholar 

  70. Correas JM, et al. Transrectal quantitative shear wave elastography: application to prostate cancer a feasibility study. Vienna: European Congress of Radiology; 2011.

    Google Scholar 

  71. Correas JM, et al. Quantitative shear wave elastography of the prostate: correlation to sextant and targeted biopsies. Vienna: European Congress of Radiology; 2012.

    Google Scholar 

  72. Sebag F, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95(12):5281–8.

    Article  PubMed  CAS  Google Scholar 

  73. Asteria C, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523–31.

    Article  PubMed  Google Scholar 

  74. Rago T, et al. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.

    Article  PubMed  CAS  Google Scholar 

  75. Moon HJ, et al. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 2012;262(3):1002–13.

    Article  PubMed  Google Scholar 

  76. Moon HJ, et al. Clinical implication of elastography as a prognostic factor of papillary thyroid microcarcinoma. Ann Surg Oncol. 2012;19(7):2279–87.

    Article  PubMed  Google Scholar 

  77. Lyshchik A, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202–11.

    Article  PubMed  Google Scholar 

  78. Vorlander C, et al. Real-time ultrasound elastography–a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395(7):865–71.

    Article  PubMed  Google Scholar 

  79. Cantisani V, et al. Prospective evaluation of multiparametric ultrasound and quantitative elastosonography in the differential diagnosis of benign and malignant thyroid nodules: preliminary experience. Eur J Radiol. 2012;81(10):2678–83.

    Article  PubMed  Google Scholar 

  80. Dighe M, et al. Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology. 2008;248(2):662–9.

    Article  PubMed  Google Scholar 

  81. Bojunga J, et al. Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid. 2010;20(10):1145–50.

    Article  PubMed  Google Scholar 

  82. Friedrich-Rust M, et al. Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics. 2012;52(1):69–74.

    Article  PubMed  Google Scholar 

  83. Giovannini M, et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol. 2009;15(13):1587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hirche TO, et al. Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy. 2008;40(11):910–7.

    Article  PubMed  CAS  Google Scholar 

  85. Iglesias-Garcia J, et al. EUS elastography for the characterization of solid pancreatic masses. Gastrointest Endosc. 2009;70(6):1101–8.

    Article  PubMed  Google Scholar 

  86. Itokawa F, et al. EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. J Gastroenterol. 2011;46(6):843–53.

    Article  PubMed  Google Scholar 

  87. Janssen J, et al. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc. 2007;65(7):971–8.

    Article  PubMed  Google Scholar 

  88. Lee TH, et al. EUS elastography: advances in diagnostic EUS of the pancreas. Korean J Radiol. 2012;13 Suppl 1:S12–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. D’Onofrio M, et al. Pancreatic mucinous cystadenoma at ultrasound acoustic radiation force impulse (ARFI) imaging. Pancreas. 2010;39(5):684–5.

    Article  PubMed  Google Scholar 

  90. D’Onofrio M, et al. Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol. 2011;80(2):241–4.

    Article  PubMed  Google Scholar 

  91. Goddi A, et al. Real-time tissue elastography for testicular lesion assessment. Eur Radiol. 2012;22(4):721–30.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Patel K, et al. Features of testicular epidermoid cysts on contrast-enhanced sonography and real-time tissue elastography. J Ultrasound Med. 2012;31(1):115–22.

    PubMed  Google Scholar 

  93. Bhatia KS, et al. Real-time qualitative ultrasound elastography of cervical lymph nodes in routine clinical practice: interobserver agreement and correlation with malignancy. Ultrasound Med Biol. 2010;36(12):1990–7.

    Article  PubMed  Google Scholar 

  94. Bhatia K, et al. Reliability of shear wave ultrasound elastography for neck lesions identified in routine clinical practice. Ultraschall Med. 2012;33(5):463–8.

    Article  PubMed  CAS  Google Scholar 

  95. Bhatia KS, et al. Shear wave elasticity imaging of cervical lymph nodes. Ultrasound Med Biol. 2012;38(2):195–201.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Barr MD, PhD, FACR, FSRU .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barr, R.G. (2014). US Elastography: Applications in Tumors. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics