Skip to main content

Hybrid Imaging: PET-CT and PET-MRI

  • Chapter
  • First Online:
  • 1748 Accesses

Abstract

This chapter provides a brief introduction to the PET technology focusing on the evolution from stand-alone PET to PET-CT and the continuous improvement of the PET-CT technology during the last 10 years. The clinical significance of the development of hybrid PET-CT scanners is described together with illustrative examples of the importance of fused functional and anatomical imaging. Despite its widespread use and impact in many oncological settings, PET-CT has some limitations: i.e., radiation dose, limited soft tissue contrast, and the sequential acquiring of PET and CT data. In an attempt to solve these issues, the hybrid PET-MRI scanner was introduced, after approximately 20 years of research. The technical development of the PET-MRI scanner is briefly discussed in this chapter, together with an introduction to the three different PET-MRI systems currently available.

The PET-MR technology was launched without any obvious “killer-indication,” apart from perhaps brain imaging. The published literature on clinical use of PET-MRI will be presented, and trends for the future development and perspectives on the use of both PET-CT and PET-MR in multifunctional oncology imaging will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

APDs:

Avalanche photodiodes

ASL:

Arterial spin labeling

BGO:

Bismuth germinate

BOLD-MRI:

Blood oxygen level-dependent MR imaging

Cu-ATSM:

64Cu-diacetyl-bis (N4-methylthiosemicarbazone)

DCE:

Dynamic contrast enhancement

DOI:

Depth-of-interaction

DWI:

Diffusion weighted imaging

FDG:

Fluorodeoxyglucose

FET:

Fluoroethyl-tyrosine

F-FAZA:

18F-fluoroazomycin arabinoside

FLT:

Fluorothymidine

F-MISO:

18F-fluoromisonidazole

fMRI:

Functional MRI

GSO:

Gadolinium oxyorthosilicate

keV:

Kilo electron Volt

kV:

Kilo Volt

LBS:

Lutetium-based scintillator

LSO:

Lutetium oxyorthosilicate

LYSO:

Cerium-doped lutetium-yttrium oxyorthosilicate

mA:

Milliampere

MET:

Methionine

MRS:

MR spectroscopy

mSv:

Millisievert

NaI(Tl):

thallium-doped sodium iodide

PERCIST:

PET response criteria in solid tumors

PET-CT:

Positron emission tomography – computed tomography

PET-MRI:

Positron emission tomography – magnetic resonance imaging

PM:

photomultiplier tubes

ps:

Picoseconds

PSF:

Point spread function

RECIST:

Response evaluation criteria in solid tumors

RF:

Radio frequency

SiPMs:

Silicon photomultipliers

SNR:

Signal-to-noise

SUV:

Standardized uptake value

T:

Tesla

TOF:

Time-of-flight

γPET:

Gamma camera PET

μ-map:

Attenuation map

References

  1. Huebner J. A possible declinig trend for worldwide innovation. Tech Forecasting Soc Change. 2005;72:980–6.

    Article  Google Scholar 

  2. Cherry SR, Phelps ME. Positron emission tomography: methods and instrumentation. In: Sandler MP et al., editors. Diagnostic nuclear medicine, vol. 1. Baltimore: Williams & Wilkins; 1995. p. 139–59.

    Google Scholar 

  3. Ak I, et al. The clinical value of 18F-FDG detection with a dual-head coincidence camera: a review. Eur J Nucl Med. 2001;28:763–78.

    Article  PubMed  CAS  Google Scholar 

  4. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  5. von Schulthess GK. Cost considerations regarding an integrated CT-PET system. Eur Radiol. 2000;10:S377–80.

    Article  Google Scholar 

  6. Balyasnikova S, et al. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging. 2012;2:458–74.

    PubMed  PubMed Central  Google Scholar 

  7. Sauter AW, et al. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med. 2010;16:508–15.

    Article  PubMed  Google Scholar 

  8. Sweet WH, Brownell GL. Localization of brain tumors with positron emitters. Nucleonics. 1953;11:40–5.

    Google Scholar 

  9. Brownell GL, Burnham CA. MGH positron camera. NEREM 1972. Record. 1972;2:117.

    Google Scholar 

  10. Burnham CA, Brownell GL. A multi-crystal positron camera. IEEE Trans Nucl Sci. 1972;19:201–5.

    Article  CAS  Google Scholar 

  11. Ido T, et al. Labeled 2-deoxy-D-glucse analogs. -labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and C-14-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;14:175–82.

    Article  CAS  Google Scholar 

  12. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;MI-1:113–22.

    Article  Google Scholar 

  13. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  14. Ziessman HA, et al. Nuclear medicine: the requisites. 2014.

    Google Scholar 

  15. Shreve P, Townsend DW. Clinical PET-CT in radiology: integrated imaging in oncology. New York: Springer; 2011.

    Book  Google Scholar 

  16. Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Meth. 2006;A567:48–56.

    Article  Google Scholar 

  17. Renker D. New trends on photodetectors. Nucl Instrum Meth. 2007;A571:1–6.

    Article  Google Scholar 

  18. Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging. 2009;36:s69–85.

    Article  PubMed  Google Scholar 

  19. Ho Shon I, et al. Positron emission tomography in lung cancer. Semin Nucl Med. 2002;XXXII:240–70.

    Article  Google Scholar 

  20. Antoch G, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol. 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  21. Bar-Shalom R, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44:1200–9.

    PubMed  Google Scholar 

  22. Cohade C, et al. Uptake in supraclavicular area fat (“USA-fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.

    PubMed  CAS  Google Scholar 

  23. Bar-Shalom R, et al. The additional value of PET/CT over PET in FDG-imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging. 2005;32:918–24.

    Article  PubMed  Google Scholar 

  24. Delbeke D, Martin WH. PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med. 2004;XXXIV:209–23.

    Article  Google Scholar 

  25. Kim JH, et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med. 2005;46:587–95.

    PubMed  Google Scholar 

  26. Maas M, et al. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38:1560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kitajima K, et al. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent uterine cancer: comparison with PET and enhanced CT. Eur J Nucl Med Mol Imaging. 2009;36:362–72.

    Article  PubMed  Google Scholar 

  28. Cerfolio RJ, et al. The accuracy of integrated PET-CT compared with dedicated PEt alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004;78:1017–23.

    Google Scholar 

  29. Lardinois D, et al. Staging of non-small-cell lung cancer with integrated positron-emission-tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  30. Reinhardt M, et al. Diagnostic performance of whole body dual modality 18F-FDG PET/CT for imaging N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  31. Pearce MS, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang D, et al. Estimated cumulative effective dose from PET/CT in pediatric patients with malignancies. Med Phys. 2008;35:2958.

    Article  Google Scholar 

  33. Boss A, et al. Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol. 2011;21:1439–46.

    Article  PubMed  Google Scholar 

  34. Mawlawi O, Townsend DW. Multimodality imaging: an update on PET/CT technology. Eur J Nucl Med Mol Imaging. 2009;36:S15–9.

    Article  PubMed  Google Scholar 

  35. Veit-Haibach P, et al. PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. Magn Reson Mater Phys. 2013;26:25–35.

    Article  Google Scholar 

  36. Gagnon D, et al. Hybrid PET-MRI imaging systems. US Patent Application 20080312526; 2008.

    Google Scholar 

  37. Shao Y, et al. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–70.

    Article  PubMed  CAS  Google Scholar 

  38. Schlemmer H, et al. Simultaneous MR/PET imaging of the human brain. Radiology. 2008;248:1028–35.

    Article  PubMed  Google Scholar 

  39. Keller SH, et al. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. Magn Reson Mater Phys. 2013;26:173–81.

    Article  Google Scholar 

  40. Chandarana H, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013;268:874–81.

    Article  PubMed  Google Scholar 

  41. Kjær A, et al. PET/MRI in cancer patients: first experiences and visions from Copenhagen. MAGMA. 2013;26:37–47.

    Article  PubMed  Google Scholar 

  42. Platzek I, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA. 2013;26:49–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Platzek I, et al. PET/MRI in head and neck cancer: initial experience. Eur J Nucl Med Mol Imaging. 2013;40:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schwenzer NF, et al. Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging – pilot study. Radiology. 2012;264:551–8.

    Article  PubMed  Google Scholar 

  45. Wiesmüller M, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:12–21.

    Article  PubMed  Google Scholar 

  46. Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol. 2013 [Epub ahead of print].

    Google Scholar 

  47. Schmidt H, et al. Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F]fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system. Invest Radiol. 2013;48:247–55.

    Article  PubMed  Google Scholar 

  48. Neuner I, et al. Multimodality imaging utilising MR-PET for human brain tumour assessment. Eur Radiol. 2012;22:2568–80.

    Article  PubMed  Google Scholar 

  49. Hochhegger B, et al. MRI in lung cancer: a pictoral essay. Br J Radiol. 2011;84:661–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Jansen JFA, et al. Tumor metabolism and perfusion in head and neck squamous cell carcinoma: pretreatment multimodality imaging with 1H magnetic resonance spectroscopy, dynamic contrast-enhanced MRI and [18F]FDG-PET. Int J Radiat Oncol Biol Phys. 2012;82:299–307.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ohno Y, et al. N stage disease in patients with non-small cell lung cancer: efficacy of quantitative and qualitative assessment with STIR Turbo Spin-Echo Imaging, diffusion-weighted MR imaging and fluorodeoxyglucose PET/CT. Radiology. 2012;261:605–15.

    Article  Google Scholar 

  52. Buchbender C, et al. Diffusion-weighted imaging as part of hybrid PET/MRI protocols for whole-body cancer staging: does it benefit lesion detection? Eur J Radiol. 2013;82:877–82.

    Article  PubMed  Google Scholar 

  53. Atherly AJ, Camidge DR. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer. 2012;106:1100–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Sequist LV, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol. 2011;22:2616–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  PubMed  CAS  Google Scholar 

  56. Nehmeh SA, et al. Reproducibility of intratumor distribution of 18F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;70:235–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Padhani AR, et al. Imaging oxygenation of human tumours. Eur Radiol. 2007;17:861–72.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dirix P, et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with 18F-FDG PET, 18F-Fluoromisonidazole PET, diffusion-weighted MRI, and dynam contrast-enhanced MRI. J Nucl Med. 2009;50:1020–7.

    Article  PubMed  Google Scholar 

  59. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  60. Jaffe CC. Measurements of response: RECIST, WHO and new alternatives. J Clin Oncol. 2006;24:3245–51.

    Article  PubMed  Google Scholar 

  61. Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today. 2005;41:773.

    Article  PubMed  CAS  Google Scholar 

  62. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.

    PubMed  CAS  Google Scholar 

  63. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Hutchings M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin Lymphoma. Blood. 2006;107:52–9.

    Article  PubMed  CAS  Google Scholar 

  65. Galbán CJ, et al. Evaluation of treatment-associated inflammatory response on diffusion-weighted magnetic resonance imaging and 2-[18F]-fluoro-2-deoxy-d-glucose-positron emission tomography imaging biomarkers. Clin Cancer Res. 2010;16:1542–52.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Galbán S, et al. Diffusion-weighted MRI for assessment of early cancer treatment response. Curr Pharm Biotechnol. 2010;11:701–8.

    Article  PubMed  Google Scholar 

  67. Heijmen L, et al. Tumour response prediction by diffusion-weighted MR-imaging: ready for clinical use? Crit Rev Oncol Hematol. 2012;83:194–207.

    Article  PubMed  Google Scholar 

  68. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.

    Article  Google Scholar 

  69. Boss A, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51:1198–205.

    Article  PubMed  Google Scholar 

  70. Sauter AW, et al. Letter to the editor re: molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging. Eur Radiol. 2011;5:1–4.

    Google Scholar 

  71. Schiepers C, Dahlbom M. Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging. Eur Radiol. 2011;21:548–54.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Werner MK, et al. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. Am J Roentgenol. 2009;193:1640–5.

    Article  Google Scholar 

  73. Aznar M, et al. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma. Cancer Imaging. 2011;Spec No A:S117. Ref Type: Abstract.

    Article  Google Scholar 

  74. Nehmeh S, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38:167–76.

    Article  PubMed  Google Scholar 

  75. Olesen OV, et al. Motion tracking for medical imaging: a non-visible structured light tracking approach. IEEE Trans Med Imaging. 2012;31:79–87.

    Article  PubMed  Google Scholar 

  76. Dikaios N, et al. MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur Radiol. 2012;22:439–46.

    Article  PubMed  Google Scholar 

  77. Ouyang J, et al. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43:60–7.

    Article  PubMed  Google Scholar 

  78. Würslin C, et al. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54:464–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Malene Fischer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, B.M., Löfgren, J. (2014). Hybrid Imaging: PET-CT and PET-MRI. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics