Skip to main content

MRI Hypoxia Measurements

  • Chapter
  • First Online:

Abstract

Tumor hypoxia is a key feature of solid tumors. It influences tumor growth, metastatic risk, and resistance to a number of important treatment strategies including radiation, chemotherapy, and thermal ablations. Accordingly, much effort has been spent on the development of noninvasive image-based measurements of tissue oxygenation. MR oxygenation measurements, in particular, are subject of extensive research, due to the favorable soft-tissue contrast, extensive availability, and lack of ionizing radiation, which is particularly beneficial in longitudinal or treatment follow-up studies.

Information on tissue oxygenation can be derived from the MR relaxation parameters R2*, i.e., the reversible transverse relaxation rate, and R1, i.e., the longitudinal relaxation rate. Historically, the blood-oxygen-level-dependent (BOLD) imaging technique is the most prominent and frequently used. Oxygen-enhanced MRI R1- and/or R2*-weighted imaging or quantification is becoming increasingly popular, since it allows the separation of the effect of oxygenation on the relaxation properties from other influences and offers a novel contrast mechanism distinct from BOLD. Quantitative measurements of the oxygen partial pressure can be obtained from 19 F imaging techniques and approaches that combine electron spin resonance (ESR) and Overhauser effects. Other methods are sensitive to hypoxia itself, but do not provide direct pO2 estimates. This chapter elaborates on the methodology of different MR-based oxygenation measurements and presents exemplary results from their evaluation in oncologic applications. It concludes with a comparison of techniques and an outlook on their future role in oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BOLD:

Blood oxygen-level dependent

ESR:

Electron spin resonance

FLOOD:

Flow and blood oxygenation level dependent sequence

FREDOM:

Fluorocarbon Relaxometry using Echo planar imaging for Dynamic Oxygen Mapping

HFB:

Hexafluorobenzene

HiSS:

High spectral and spatial resolution

HMDSO:

Hexamethyldisiloxane

OE-MRI:

Oxygen-enhanced MRI

PFCs:

Perfluorocarbons

TOLD:

Tissue Oxygen Level Dependant contrast MRI

References

  1. Avni R, et al. Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR Biomed. 2011;24:569–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Gillies RJ. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16:430–50.

    PubMed  Google Scholar 

  3. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.

    PubMed  CAS  Google Scholar 

  4. Baudelet C, Gallez B. Current issues in the utility of blood oxygen level dependent MRI for the assessment of modulations in tumor oxygenation. Curr Med Imaging Rev. 2005;1:229–43.

    CAS  Google Scholar 

  5. Fyles A, et al. Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol. 2002;20:680–7.

    PubMed  CAS  Google Scholar 

  6. Gatenby RA, et al. Oxygen distribution in squamous-cell carcinoma metastases and its relationship to outcome of radiation-therapy. Int J Radiat Oncol Biol Phys. 1988;14:831–8.

    PubMed  CAS  Google Scholar 

  7. Gross S, et al. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med. 2003;9:1327–31.

    PubMed  CAS  Google Scholar 

  8. Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25:4066–74.

    PubMed  Google Scholar 

  9. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev. 1994;13:139–68.

    PubMed  CAS  Google Scholar 

  10. Yetkin FZ, Mendelsohn D. Hypoxia imaging in brain tumors. Neuroimaging Clin N Am. 2002;12:537–52.

    PubMed  Google Scholar 

  11. Kaanders JH, et al. Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother Oncol. 1998;48:115–22.

    PubMed  CAS  Google Scholar 

  12. Kaanders JH, et al. ARCON: a novel biology-based approach in radiotherapy. Lancet Oncol. 2002;3:728–37.

    PubMed  Google Scholar 

  13. Brown JM, Wouters BG. Comments on hyperbaric oxygen and carbogen/nicotinamide with fractionated radiations. Radiat Res. 1997;148:526–7.

    PubMed  CAS  Google Scholar 

  14. Gray L, et al. The concentration of oxygen dissolved in tissues at time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    PubMed  CAS  Google Scholar 

  15. Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat Res. 1997;147:541–50.

    PubMed  CAS  Google Scholar 

  16. Neeman M, Dafni H. Structural, functional, and molecular MR imaging of the microvasculature. Annu Rev Biomed Eng. 2003;5:29–56.

    PubMed  CAS  Google Scholar 

  17. Zhao D, et al. Measuring changes in tumor oxygenation. Methods Enzymol. 2004;386:378–418.

    PubMed  CAS  Google Scholar 

  18. Ogawa S, et al. Oxygenation-sensitive contrast in magnetic-resonance image of rodent brain at high magnetic-fields. Magn Reson Med. 1990;14:68–78.

    PubMed  CAS  Google Scholar 

  19. Chiarotti G, et al. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Nuovo Cimento. 1955;1:863–73.

    Google Scholar 

  20. Zaharchuk G, et al. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol. 2006;13:1016–24.

    PubMed  Google Scholar 

  21. Al-Hallaq HA, et al. MRI measurements correctly predict the relative effects of tumor oxygenating agents on hypoxic fraction in rodent BA1112 tumors. Int J Radiat Oncol Biol Phys. 2000;47:481–8.

    PubMed  CAS  Google Scholar 

  22. Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med. 2002;48:980–6.

    PubMed  Google Scholar 

  23. Baudelet C, et al. Determination of the maturity and functionality of tumor vasculature by MRI: correlation between BOLD-MRI and DCE-MRI using P792 in experimental fibrosarcoma tumors. Magn Reson Med. 2006;56:1041–9.

    PubMed  Google Scholar 

  24. Dunn JF. Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry study. J Magn Reson Imaging. 2002;16:511–21.

    PubMed  Google Scholar 

  25. Müller A. Intracranial tumor response to respiratory challenges at 3.0 T: impact of different methods to quantify changes in the MR relaxation rate R2*. J Magn Reson Med. 2010;32:17–23.

    Google Scholar 

  26. Müller A. Analysing the response in R2* relaxation rate of intracranial tumors to hyperoxic and hypercapnic respiratory challenges: initial results. Eur Radiol. 2011;21:786–98.

    PubMed  Google Scholar 

  27. Mürtz P, et al. Changes in the MR relaxation rate R(2)* induced by respiratory challenges at 3.0 T: a comparison of two quantification methods. NMR Biomed. 2010;23:1053–60.

    PubMed  Google Scholar 

  28. Remmele S, et al. Quantification of the magnetic resonance signal response to dynamic (C)O(2)-enhanced imaging in the brain at 3 T: R(2)* BOLD vs. balanced SSFP. J Magn Reson Imaging. 2010;31:1300–10.

    PubMed  Google Scholar 

  29. Rijpkema M, et al. Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;53:1185–91.

    PubMed  Google Scholar 

  30. Rijpkema M, et al. BOLD MRI response to hypercapnic hyperoxia in patients with meningiomas: correlation with Gadolinium-DTPA uptake rate. Magn Reson Imaging. 2004;22:761–7.

    PubMed  CAS  Google Scholar 

  31. Rodrigues LM, et al. Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging. 2004;19:482–8.

    PubMed  Google Scholar 

  32. Zhao DW, et al. Comparison of H-1 blood oxygen level-dependent (BOLD) and F-19 MRI to investigate tumor oxygenation. Magn Reson Med. 2009;62:357–64.

    PubMed  CAS  Google Scholar 

  33. Gulaka PK, et al. Hexamethyldisiloxane-based nanoprobes for 1H MRI oximetry. NMR Biomed. 2011;24:1226–34.

    PubMed  CAS  Google Scholar 

  34. Kodibagkar VD, et al. A novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med. 2006;55:743–8.

    PubMed  CAS  Google Scholar 

  35. Kodibagkar VD, et al. Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci. 2008;13:1371–84.

    PubMed  CAS  Google Scholar 

  36. Kodibagkar VD, et al. Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed. 2008;21:899–907.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Krishna MC, et al. Electron paramagnetic resonance imaging of tumor pO(2). Radiat Res. 2012;177:376–86.

    PubMed  CAS  Google Scholar 

  38. Halle C, et al. Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI. Cancer Res. 2012;72:5285–95.

    PubMed  CAS  Google Scholar 

  39. Ceelen W, et al. Noninvasive monitoring of radiotherapy-induced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model. Int J Radiat Oncol Biol Phys. 2006;64:1188–96.

    PubMed  Google Scholar 

  40. Donaldson SB, et al. Perfusion estimated with rapid dynamic contrast-enhanced magnetic resonance imaging correlates inversely with vascular endothelial growth factor expression and pimonidazole staining in head-and-neck cancer: a pilot study. Int J Radiat Oncol Biol Phys. 2011;81:1176–83.

    PubMed  Google Scholar 

  41. Egeland TA, et al. Assessment of fraction of radiobiologically hypoxic cells in human melanoma xenografts by dynamic contrast-enhanced MRI. Magn Reson Med. 2006;55:874–82.

    PubMed  Google Scholar 

  42. Ovrebo KM, et al. Assessment of hypoxia and radiation response in intramuscular experimental tumors by dynamic contrast-enhanced magnetic resonance imaging. Radiother Oncol. 2012;102:429–35.

    PubMed  CAS  Google Scholar 

  43. Cooper RA, et al. Tumor oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol. 2000;57:53–9.

    PubMed  CAS  Google Scholar 

  44. Lyng H, et al. Assessment of tumor oxygenation in human cervical carcinoma by use of dynamic Gd-DTPA-enhanced MR imaging. J Magn Reson Imaging. 2001;14:750–6.

    PubMed  CAS  Google Scholar 

  45. Gulliksrud K, et al. Quantitative assessment of hypoxia in melanoma xenografts by dynamic contrast-enhanced magnetic resonance imaging: intradermal versus intramuscular tumors. Radiother Oncol. 2010;97:233–8.

    PubMed  Google Scholar 

  46. Law R, Bukwirwa H. 2008. The physiology of oxygen delivery. Update in anaesthesia. http://update.anaesthesiologists.org/wp-content/uploads/2008/12/Oxygen-Delivery.pdf. Accessed Feb 2013.

  47. Chopra S, et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol. 2009;85:805–13.

    PubMed  CAS  Google Scholar 

  48. Christen T, et al. Is T2* enough to assess oxygenation? Quantitative blood oxygen level-dependent analysis in brain tumor. Radiology. 2012;262:495–502.

    PubMed  PubMed Central  Google Scholar 

  49. Griffiths JR, et al. The response of human tumors to carbogen breathing, monitored by Gradient-Recalled Echo Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys. 1997;39:697–701.

    PubMed  CAS  Google Scholar 

  50. Hoskin PJ, et al. Hypoxia in prostate cancer: correlation of bold-MRI with pimonidazole immunohistochemistry – initial observations. Int J Radiat Oncol Biol Phys. 2007;68:1065–71.

    PubMed  CAS  Google Scholar 

  51. Spees WM, et al. Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med. 2001;45:533–42.

    PubMed  CAS  Google Scholar 

  52. An HY, Lin WL. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20:1225–36.

    PubMed  CAS  Google Scholar 

  53. Christen T, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed. 2011;24:393–403.

    PubMed  Google Scholar 

  54. Fujita N, et al. Quantitative mapping of cerebral deoxyhemoglobin content using MR imaging. Neuroimage. 2003;20:2071–83.

    PubMed  Google Scholar 

  55. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med. 2007;57:115–26.

    PubMed  CAS  Google Scholar 

  56. Bryan RN. Science to practice: is T2* enough to assess oxygenation? Radiology. 2012;262:375–7.

    PubMed  Google Scholar 

  57. Young IR, et al. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comp Tomogr. 1981;5:543–7.

    CAS  Google Scholar 

  58. Berkowitz BA, et al. Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: Eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med. 2001;”46:412–6.

    PubMed  CAS  Google Scholar 

  59. Schwarzbauer C, Deichmann R. Vascular component analysis of hyperoxic and hypercapnic BOLD contrast. Neuroimage. 2012;59:2401–12.

    PubMed  Google Scholar 

  60. Blockley NP, et al. Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med. 2008;60:1313–20.

    PubMed  CAS  Google Scholar 

  61. Howe FA, et al. Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumors. NMR Biomed. 2001;14:497–506.

    PubMed  CAS  Google Scholar 

  62. Karczmar GS, et al. Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumors. NMR Biomed. 1994;7:3–11.

    PubMed  CAS  Google Scholar 

  63. Kuperman VY, et al. Changes in T2*-weighted images during hyperoxia differentiate tumors from normal tissue. Magn Reson Med. 1995;33:318–25.

    PubMed  Google Scholar 

  64. Robinson SP, et al. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow. Semin Radiat Oncol. 1998;8:197–207.

    PubMed  CAS  Google Scholar 

  65. al-Hallaq HA, et al. Using high spectral and spatial resolution bold MRI to choose the optimal oxygenating treatment for individual cancer patients. Adv Exp Med Biol. 2003;530:433–40.

    PubMed  Google Scholar 

  66. Jordan BF, et al. Changes in tumor oxygenation/perfusion induced by the no donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI. Int J Radiat Oncol Biol Phys. 2000;48:565–70.

    PubMed  CAS  Google Scholar 

  67. Al-Hallaq HA, et al. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys. 1998;41:151–9.

    PubMed  CAS  Google Scholar 

  68. Al-Hallaq HA, et al. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI. NMR Biomed. 2002;15:28–36.

    PubMed  CAS  Google Scholar 

  69. Akber SF. Correlation between oxygen tension and spin–lattice relaxation rate in tumors. Eur J Radiol. 1989;9:56–9.

    PubMed  CAS  Google Scholar 

  70. Edelman RR, et al. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med. 1996;2:1236–9.

    PubMed  CAS  Google Scholar 

  71. Jakob PM, et al. Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med. 2004;51:1009–16.

    PubMed  Google Scholar 

  72. Ohno Y, et al. Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol. 2001;177:185–94.

    PubMed  CAS  Google Scholar 

  73. Kershaw LE, et al. Measurement of arterial plasma oxygenation in dynamic oxygen-enhanced MRI. Magn Reson Med. 2010;64:1838–42.

    PubMed  Google Scholar 

  74. Jones RA, et al. Imaging the changes in renal T-1 induced by the inhalation of pure oxygen: a feasibility study. Magn Reson Med. 2002;47:728–35.

    PubMed  Google Scholar 

  75. O’Connor JPB, et al. Organ-specific effects of oxygen and carbogen gas inhalation on tissue longitudinal relaxation times. Magn Reson Med. 2007;58:490–6.

    PubMed  Google Scholar 

  76. O’Connor JPB, et al. Comparison of normal tissue R-1 and R-2* modulation by oxygen and carbogen. Magn Reson Med. 2009;61:75–83.

    PubMed  Google Scholar 

  77. Tadamura E, et al. Effect of oxygen inhalation on relaxation times in various tissues. JMagn Reson Imaging. 1997;7:220–5.

    CAS  Google Scholar 

  78. Matsumoto K, et al. MR assessment of changes of tumor in response to hyperbaric oxygen treatment. Magn Reson Med. 2006;56:240–6.

    PubMed  Google Scholar 

  79. O’Connor JPB, et al. Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int J Radiat Oncol Biol Phys. 2009;75:1209–15.

    PubMed  Google Scholar 

  80. Kinoshita Y, et al. Preservation of tumor oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging. Br J Cancer. 2000;82:88–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Pacheco-Torres J, et al. DOCENT-dynamic oxygen challenge evaluated by NMR T1 and T2* of tumors. Proc Int Soc Magn Reson Med. 2008;16:abstract 450.

    Google Scholar 

  82. Burrell JS, et al. Exploring ΔR2* and ΔR1 as imaging biomarkers of tumor oxygenation. J Magn Reson Imaging (IMRI). 2013;38:429–34.

    Google Scholar 

  83. Zhou H, et al. Integrated MRI approaches to interrogate tumor oxygenation and vascular perfusion of orthotopic brain tumors in a mouse model. Proc Int Soc Magn Reson Med. 2010;18:abstract 2793.

    Google Scholar 

  84. Winter JD, et al. Quantitative MRI assessment of VX2 tumor oxygenation changes in response to hyperoxia and hypercapnia. Phys Med Biol. 2011;56:1225.

    PubMed  Google Scholar 

  85. Arnold JFT, et al. Quantitative regional oxygen transfer imaging of the human lung. J Magn Reson Imaging. 2007;26:637–45.

    PubMed  Google Scholar 

  86. Linnik IV, et al. Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. doi: 10.1002/mrm.24826. Magn Res Med. 2013;(in press).

  87. Remmele S, et al. Novel MR method to detect non-normoxic tissue based on cluster analysis of the dynamic R2* and R1 response to a hyperoxic respiratory challenge. Proc Int Soc Magn Reson Med. 2012;20.

    Google Scholar 

  88. Silvennoinen MJ, et al. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med. 2003;49:47–60.

    PubMed  CAS  Google Scholar 

  89. Remmele S, et al. Classification of tissue oxygenation properties based on simultaneous dynamic ΔR1 and ΔR2* D(C)O2E-MRI. Proc Int Soc Magn Reson Med. 2011;19:abstract 4270.

    Google Scholar 

  90. Howe FA, et al. Flow and oxygenation dependent (FLOOD) contrast MR imaging to monitor the response of rat tumors to carbogen breathing. Magn Reson Imaging. 1999;17:1307–18.

    PubMed  CAS  Google Scholar 

  91. Robinson SP, et al. Tumor response to hypercapnia and hyperoxia monitored by FLOOD magnetic resonance imaging. NMR Biomed. 1999;12:98–106.

    PubMed  CAS  Google Scholar 

  92. Remmele S, et al. Dynamic and simultaneous MR measurement of R1 and R2* changes during respiratory challenges for the assessment of blood and tissue oxygenation. Magn Reson Med. 2013;70(1):136–46.

    PubMed  Google Scholar 

  93. Roberts R, et al. alpha-Lipoic acid corrects late-phase supernormal retinal oxygenation response in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47:4077–82.

    PubMed  Google Scholar 

  94. Zaharchuk G, et al. Measurement of cerebrospinal fluid oxygen partial pressure in humans using MRI. Magn Reson Med. 2005;54:113–21.

    PubMed  Google Scholar 

  95. Wright GA, et al. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1:275–83.

    PubMed  CAS  Google Scholar 

  96. Thomas SR. The biomedical applications of Fluorine-19 NMR. In: Partain CL, Price RR, Patton JA, Kulkarni MV, James AEJ, editors. Magnetic resonance imaging. London: W.B. Saunders Co; 1988. p. 1536–52.

    Google Scholar 

  97. Zhao D, et al. Tumor physiological response to combretastatin A4 phosphate assessed by MRI. Int J Radiat Oncol Biol Phys. 2005;62:872–80.

    PubMed  CAS  Google Scholar 

  98. Mason RP. Non-invasive physiology: 19F NMR of perfluorocarbon. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:1141–53.

    PubMed  CAS  Google Scholar 

  99. Delpuech J-J, et al. Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. J Chem Phys. 1979;70:2680–7.

    CAS  Google Scholar 

  100. Mason RP, et al. In vivo oxygen tension and temperature: simultaneous determination using 19F spectroscopy of perfluorocarbon. Magn Reson Med. 1993;29:296–302.

    PubMed  CAS  Google Scholar 

  101. Mason RP, et al. Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed. 1996;9:125–34.

    PubMed  CAS  Google Scholar 

  102. Shukla HP, et al. A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature. J Magn Reson Series B. 1995;106:131–41.

    CAS  Google Scholar 

  103. Eidelberg D, et al. 19F imaging of cerebral blood oxygenation in experimental middle cerebral artery occlusion: preliminary results. J Cereb Blood Flow Metab. 1988;8:276–81.

    PubMed  CAS  Google Scholar 

  104. Lai C-S, et al. Effect of oxygen and the spin label TEMPO-Laurate on 19F and proton relaxation rates of the perfluorochemical blood substitute FC-43 emulsion. J Magn Reson. 1984;57:447–52.

    CAS  Google Scholar 

  105. Thomas SR, et al. Evaluation of the influence of the aqueous-phase bioconstituent environment on the F-19 T1 of perfluorocarbon blood substitute emulsions. J Magn Reson Imaging. 1994;4:631–5.

    PubMed  CAS  Google Scholar 

  106. Yu J-X, et al. New frontiers and developing applications in 19F NMR. Prog NMR Spectrosc. 2013;70:25–49.

    CAS  Google Scholar 

  107. Hunjan S, et al. Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. Int J Radiat Oncol Biol Phys. 2001;49:1097–108.

    PubMed  CAS  Google Scholar 

  108. Jordan BF, et al. Rapid monitoring of oxygenation by 19F magnetic resonance imaging: Simultaneous comparison with fluorescence quenching. Magn Reson Med. 2009;61:634–8.

    PubMed  Google Scholar 

  109. Bourke VA, et al. Correlation of radiation response with tumor oxygenation in the dunning prostate R3327-AT1 tumor. Int J Radiat Oncol Biol Phys. 2007;67:1179–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Diepart C, et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res. 2012;72:482–90.

    PubMed  CAS  Google Scholar 

  111. Krohn KA, et al. Molecular imaging of hypoxia. J Nucl Med. 2008;49:129S–48148.

    PubMed  CAS  Google Scholar 

  112. Magat J, et al. Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using F-19 MRI. Med Phys. 2010;37:5434–41.

    PubMed  CAS  Google Scholar 

  113. Mason RP, et al. Quantitative assessment of tumor oxygen dynamics: molecular imaging for prognostic radiology. J Cell Biochem. 2002;87(suppl):45–53.

    Google Scholar 

  114. Mason RP, et al. Multimodality imaging of hypoxia in preclinical settings. Q J Nucl Med Mol Imaging. 2010;54:259–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. McNab JA, et al. Tissue oxygen tension measurements in the Shionogi model of prostate cancer using F-19 MRS and MRI. Magn Reson Mater Phys Biol Med. 2004;17:288–95.

    CAS  Google Scholar 

  116. Song Y, et al. Dynamic breast tumor oximetry: the development of prognostic radiology. Technol Cancer Res Treat. 2002;1:471–8.

    PubMed  Google Scholar 

  117. Xia M, et al. Tumor oxygen dynamics measured simultaneously by near infrared spectroscopy and 19F magnetic resonance imaging in rats. Phys Med Biol. 2006;51:45–60.

    PubMed  CAS  Google Scholar 

  118. Zhao D, et al. Differential oxygen dynamics in two diverse Dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge. Int J Radiat Oncol Biol Phys. 2002;53:744–56.

    PubMed  Google Scholar 

  119. Zhao D, et al. Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia. 2003;5:308–18.

    PubMed  PubMed Central  Google Scholar 

  120. Zhao D, et al. Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor. Radiat Res. 2003;159:621–31.

    PubMed  CAS  Google Scholar 

  121. Zhao D, et al. Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI. Am J Clin Oncol. 2001;24:462–6.

    PubMed  CAS  Google Scholar 

  122. Kim JG, et al. Interplay of tumor vascular oxygenation and tumor pO2 observed using NIRS, oxygen needle electrode, and 19F MR pO2 mapping. J Biomed Opt. 2003;8:53–62.

    PubMed  Google Scholar 

  123. Zhao D, et al. Tumor oxygen dynamics with respect to growth and respiratory challenge: investigation of the Dunning prostate R3327-HI tumor. Radiat Res. 2001;156:510–20.

    PubMed  CAS  Google Scholar 

  124. Mason RP, et al. Oxygenation in a human tumor xenograft: manipulation through respiratory challenge and anti-body directed infarction. In: Dunn JF, Swartz HM, editors. Oxygen transport to tissue XXII proceedings of the 27th annual meeting of the International Society on Oxygen Transport to Tissue. New York: Kluwer Acad; 2003. p. 197–204.

    Google Scholar 

  125. Berkowitz BA, et al. Oxygen kinetics in the vitreous substitute perfluorotributylamine – a F-19 NMR-study in vivo. Invest Ophthalmol Vis Sci. 1991;32:2382–7.

    PubMed  CAS  Google Scholar 

  126. Wilson CA, et al. Measurement of preretinal pO2 in the vitrectomized human eye using 19F NMR. Arch Ophthalmol. 1992;110:1098–100.

    PubMed  CAS  Google Scholar 

  127. Zhang W, et al. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2003;44:3119–23.

    PubMed  Google Scholar 

  128. Duong TQ, et al. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med. 2001;45:61–70.

    PubMed  CAS  Google Scholar 

  129. Liu S, et al. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med. 2011;66:1722–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Mignion L, et al. Hexafluorobenzene in comparison with perfluoro-15-crown-5-ether for repeated monitoring of oxygenation using 19F MRI in a mouse model. Magn Reson Med. 2013;69:248–54.

    PubMed  CAS  Google Scholar 

  131. McIntyre DJO, et al. Tumor oxygenation measurements by 19F MRI of perfluorocarbons. Curr Sci. 1999;76:753–62.

    CAS  Google Scholar 

  132. Fishman JE, et al. Oxygen-sensitive 19F NMR imaging of the vascular system in vivo. Magn Reson Imaging. 1987;5:279–85.

    PubMed  CAS  Google Scholar 

  133. Fishman JE, et al. In vivo measurements of vascular oxygen tension in tumors using MRI of a fluorinated blood substitute. Invest Radiol. 1989;24:65–71.

    PubMed  CAS  Google Scholar 

  134. Giraudeau C, et al. High sensitivity 19F MRI of a perfluorooctyl bromide emulsion: application to a dynamic biodistribution study and oxygen tension mapping in the mouse liver and spleen. NMR Biomed. 2012;25:654–60.

    PubMed  CAS  Google Scholar 

  135. Noth U, et al. In vivo measurement of partial oxygen pressure in large vessels and in the reticuloendothelial system using fast 19F-MRI. Magn Reson Med. 1995;34:738–45.

    PubMed  CAS  Google Scholar 

  136. Kaufman RJ. Medical oxygen transport using perfluorochemicals. In: Goldstein J, editor. Biotechnology of blood. New York: Butterworth-Heinemann; 1991. p. 127–58.

    Google Scholar 

  137. Barker BR, et al. Oxygen tension mapping by 19F echo planar NMR imaging of sequestered perfluorocarbon. J Magn Reson Imaging. 1994;4:595–602.

    PubMed  CAS  Google Scholar 

  138. Bellemann ME, et al. Quantification and visualization of oxygen partial pressure in vivo by 19F NMR imaging of perfluorocarbons. Biomed Tech. 2002;47:451–4.

    Google Scholar 

  139. Dardzinski BJ, Sotak CH. Rapid tissue oxygen tension mapping using 19F Inversion-recovery Echo-planar imaging of Perfluoro-15-crown-5-ether. Magn Reson Med. 1994;32:88–97.

    PubMed  CAS  Google Scholar 

  140. Holland SK, et al. Imaging oxygen tension in liver and spleen by 19F NMR. Magn Reson Med. 1993;29:446–58.

    PubMed  CAS  Google Scholar 

  141. Kucejova B, et al. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene. 2011;30:2147–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Mattrey RF, Long DC. Potential role of PFOB in diagnostic imaging. Invest Radiol. 1988;23:s298–301.

    PubMed  Google Scholar 

  143. Baldwin NJ, et al. In situ 19F MRS measurement of RIF-1 tumor blood volume: corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size. Magn Reson Imaging. 1996;14:275–80.

    Google Scholar 

  144. Mason RP, et al. Non-invasive determination of tumor oxygen tension and local variation with growth. Int J Radiat Oncol Biol Phys. 1994;29:95–103.

    PubMed  CAS  Google Scholar 

  145. Baudelet C, et al. Physiological noise in murine solid tumors using T2*-weighted gradient-echo imaging: a marker of tumor acute hypoxia? Phys Med Biol. 2004;49:3389–411.

    PubMed  Google Scholar 

  146. Hallac RR, et al. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR Biomed. 2012;25:1321–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Jiang L, et al. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study. J Magn Reson Imaging. 2013;37:1083–92.

    PubMed  Google Scholar 

  148. Karczmar GS, et al. Magnetic resonance measurement of response to hyperoxia differentiates tumors from normal tissue and may be sensitive to oxygen consumption. Invest Radiol. 1994;29(2):161–3.

    Google Scholar 

  149. Robinson SP, et al. Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1995;33:855–9.

    PubMed  CAS  Google Scholar 

  150. Robinson SP, et al. The response to carbogen breathing in experimental tumour models monitored by gradient-recalled echo magnetic resonance imaging. Br J Cancer. 1997;75:1000–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Ding Y, et al. Simultaneous measurement of TOLD and BOLD effects in abdominal tissue oxygenation level studies. doi: 10.1002/jmri.24006. J Magn Reson Imaging. 2013;38(5):1230–6.

    Google Scholar 

  152. Baete SH, et al. An oxygen-consuming phantom simulating perfused tissue to explore oxygen dynamics and 19F MRI oximetry. Magn Reson Mater Phys Biol Med. 2010;23:217–26.

    CAS  Google Scholar 

  153. Fan XB, et al. Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements. Int J Radiat Oncol Biol Phys. 2002;54:1202–9.

    PubMed  CAS  Google Scholar 

  154. Robinson SP, Griffiths JR. Current issues in the utility of 19F nuclear magnetic resonance methodologies for the assessment of tumor hypoxia. Phil Trans Biol Sci. 2004;359:987–96.

    CAS  Google Scholar 

  155. Thomas SR, et al. In vivo pO2 imaging in the porcine model with perfluorocarbon F-19 NMR at low field. Magn Reson Imaging. 1996;14:103–14.

    PubMed  CAS  Google Scholar 

  156. Diepart C, et al. In vivo mapping of tumor oxygen consumption using 19F MRI relaxometry. NMRBiomed. 2011;24(5):458–63.

    CAS  Google Scholar 

  157. Kadayakkara DKK, et al. In Vivo Observation of Intracellular Oximetry in Perfluorocarbon-Labeled Glioma Cells and Chemotherapeutic Response in the CNS Using Fluorine-19 MRI. Magn Reson Med. 2010;64(5):1252–9.

    PubMed  PubMed Central  Google Scholar 

  158. Mignion L, et al. Hexafluorobenzene in comparison with perfluoro-15-crown-5-ether for repeated monitoring of oxygenation using 19F MRI in a mouse model. Magn Reson Med 2012:epub

    Google Scholar 

  159. Pacheco-Torres J, et al. Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 2011;24:1–16.

    PubMed  CAS  Google Scholar 

  160. Procissi D, et al. In vivo F-19 magnetic resonance spectroscopy and chemical shift imaging of tri-fluoro-nitroimidazole as a potential hypoxia reporter in solid tumors. Clin Cancer Res. 2007;13:3738–47.

    PubMed  CAS  Google Scholar 

  161. Rojas-Quijano FA, et al. Synthesis and characterization of a hypoxia-sensitive MRI probe. Chemistry. 2012;18:9669–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Golman K, et al. Dynamic in vivo oxymetry using overhauser enhanced MR imaging. J Magn Reson Imaging. 2000;12:929–38.

    PubMed  CAS  Google Scholar 

  163. Krishna MC, et al. Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A. 2002;99:2216–21.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Investigations were supported in part by funds from the NIH NCI (R01 CA139043; 1U24 CA126608; P30 CA142543; P41 RR02584). S. Remmele would also like to thank her partners at the University of Bonn, Germany, and Dr. Petra Mürtz in particular, for the fruitful collaboration, their helpful advice, and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Remmele PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Remmele, S., Mason, R.P., O’Connor, J.P.B. (2014). MRI Hypoxia Measurements. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics