Skip to main content

A Convex Formulation for Global Histogram Based Binary Segmentation

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013)

Abstract

In this paper, we present a general convex formulation for global histogram-based binary segmentation. The model relies on a data term measuring the histograms of the regions to segment w.r.t. reference histograms as well as TV regularization allowing the penalization of the length of the interface between the two regions. The framework is based on some l 1 data term, and the obtained functional is minimized with an algorithm adapted to non smooth optimization. We present the functional and the related numerical algorithm and we then discuss the incorporation of color histograms, cumulative histograms or structure tensor histograms. Experiments show the interest of the method for a large range of data including both gray-scale and color images. Comparisons with a local approach based on the Potts model or with a recent one based on Wasserstein distance also show the interest of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Applied Mathematics 63, 2003 (2002)

    MathSciNet  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer (2002)

    Google Scholar 

  3. Aujol, J.-F., Aubert, G., Blanc-Féraud, L.: Wavelet-based level set evolution for classification of textured images. IEEE Transactions on Image Processing 12, 1634–1641 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ayed, I., Chen, H., Punithakumar, K., Ross, I., Li, S.: Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the bhattacharyya measure. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3288–3295. IEEE (2010)

    Google Scholar 

  5. Brown, E., Chan, T.F., Bresson, X.: Completely Convex Formulation of the Chan-Vese Image Segmentation Model. In: IJCV, pp. 1–19 (2011)

    Google Scholar 

  6. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Transactions on Image Processing 15(10), 3213–3218 (2006)

    Article  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Collins, M.D., Xu, J., Grady, L., Singh, V.: Random walks based multi-image segmentation: Quasiconvexity results and gpu-based solutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), pp. 1656–1663. IEEE (2012)

    Google Scholar 

  11. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision 72, 215 (2007)

    Article  Google Scholar 

  12. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  13. Gorelick, L., Schmidt, F.R., Boykov, Y., Delong, A., Ward, A.: Segmentation with non-linear regional constraints via line-search cuts. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. ECCV 2012, pp. 583–597. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Herbulot, A., Jehan-Besson, S., Duffner, S., Barlaud, M., Aubert, G.: Segmentation of vectorial image features using shape gradients and information measures. Journal of Mathematical Imaging and Vision 25(3), 365–386 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kim, J., Fisher, J.W., Yezzi, A., Cetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Image Processing 14, 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ni, K., Bresson, X., Chan, T.F., Esedoglu, S.: Local histogram based segmentation using the wasserstein distance. International Journal of Computer Vision 84(1), 97–111 (2009)

    Article  Google Scholar 

  18. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. JCP 79(1), 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: ICCV (1999)

    Google Scholar 

  21. Peyré, G., Fadili, J., Rabin, J.: Wasserstein active contours. In: IEEE International Conference on Image Processing (ICIP 2012) (2012)

    Google Scholar 

  22. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: IEEE International Conference on Computer Vision (ICCV 2011), pp. 1762–1769 (2011)

    Google Scholar 

  23. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM JIS 3, 1122–1145 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Punithakumar, K., Yuan, J., Ben Ayed, I., Li, S., Boykov, Y.: A convex max-flow approach to distribution-based figure-ground separation. SIAM Journal on Imaging Sciences 5(4), 1333–1354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 993–1000. IEEE (2006)

    Google Scholar 

  26. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: CVPR (2003)

    Google Scholar 

  27. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  28. Vicente, S., Kolmogorov, V., Rother, C.: Joint optimization of segmentation and appearance models. In: IEEE International Conference on Computer Vision (ICCV 2009), pp. 755–762. IEEE (2009)

    Google Scholar 

  29. Yildizoglu, R., Aujol, J.-F., Papadakis, N.: Active contours without level sets. In: IEEE International Conference on Image Processing (ICIP 2012) (2012)

    Google Scholar 

  30. Yuan, Y., Ukwatta, E., Tai, X.C., Fenster, A., Schnörr, C.: A fast global optimization-based approach to evolving contours with generic shape prior. In: submission in IEEE TPAMI, also UCLA Tech. Report CAM 12-38 (2012)

    Google Scholar 

  31. Zhu, S.C., Lee, T.S., Yuille, A.L.: Region competition: unifying snakes, region growing, energy/bayes/mdl for multi-band image segmentation. In: IEEE International Conference on Computer Vision (ICCV 1995), pp. 416 –423 (June 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yıldızoğlu, R., Aujol, JF., Papadakis, N. (2013). A Convex Formulation for Global Histogram Based Binary Segmentation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics