Laser Interference Nanofabrication

  • Qian Liu
  • Xuanming Duan
  • Changsi Peng
Part of the Nanostructure Science and Technology book series (NST)


Laser interference lithography (LIL) will play a key role in realizing the full potential of interference nanolithography. The main advantageous features of the LIL technology in fabrication of nanostructures and devices are high resolution compared with other optical technologies and low cost and high efficiency compared with other beam technologies. LIL is the preferred method to generate periodical and quasiperiodical patterns. It is a kind of maskless lithography. The interference pattern can be transferred to recording materials by chemical, physical, or thermal processes. The following parts are included in this chapter: (1) discussion on the interference pattern modified by parameters of the LIL setup including incident configuration, polarization, phase, and intensity; (2) graded-index photonic crystal lens by LIL patterns; (3) patterns by direct writing with LIL technology; and (4) in situ patterned semiconductor quantum dots by LIL patterns.


Incident Angle Interference Pattern Azimuth Angle Direct Writing Beam Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRefGoogle Scholar
  2. 2.
    Vukusic P, Sambles JR, Lawrence CR (2003) Structural colour: colour mixing in wing scales of a butterfly. Nature 404:457–457CrossRefGoogle Scholar
  3. 3.
    Venkatakrishnan K, Sivakumar NR, Tan B (2003) Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration. Appl Phys A 76(2):143–146CrossRefGoogle Scholar
  4. 4.
    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404:53–56CrossRefGoogle Scholar
  5. 5.
    Konkola PT, Chen CG, Heilmann RK, Joo C, Montoya JC, Chang C-H, Schattenburg ML (2003) Nanometer-level repeatable metrology using the nanoruler. J Vac Sci Technol B 21(6):3097–3101CrossRefGoogle Scholar
  6. 6.
    Shibata S, Che Y, Sugihara O, Okamoto N, Kaino T (2004) Fabrication of high-resolution periodical structure in photoresist polymers using laser interference technique. Jpn J Appl Phys 43:2370–2371CrossRefGoogle Scholar
  7. 7.
    Bloomstein TM, Marchant MF, Deneault S, Hardy DE, Rothschild M (2006) 22-nm immersion interference lithography. Opt Express 14(14):6434–6443CrossRefGoogle Scholar
  8. 8.
    Chang C-H, Zhao Y, Heilmann RK, Schattenburg ML (2008) Fabrication of 50 nm-period gratings with multilevel interference lithography. Opt Lett 33(14):1572–1574CrossRefGoogle Scholar
  9. 9.
    Rodriguez A, Ellman M, Ayerdi I, Perez N, Olaizola SM, Zhang J, Ji Z, Berthou T, Peng CS, Verevkin YK, Wang Z (2009) Interference lithography processes with high-power laser pulses. Proc SPIE 7201:72010RCrossRefGoogle Scholar
  10. 10.
    Solak HH, David C, Gobrecht J, Golovkina V, Cerrina F, Kim SO, Nealey PF (2003) Sub-50 nm period patterns with EUV interference lithography. Microelectron Eng 67–68:56–62CrossRefGoogle Scholar
  11. 11.
    Tan C, Peng CS, Petryakov VN, Verevkin YK, Zhang J, Wang Z, Olaizola SM, Berthou T, Tisserand S, Pessa M (2008) Line defects in two dimensional four-beam interference patterns. New J Phys 10(2):023023-1–023023-8CrossRefGoogle Scholar
  12. 12.
    Tan C, Peng CS, Pakarinen J, Petryakov VN, Verevkin YK, Zhang J, Wang Z, Olaizola SM, Berthou T, Tisserand S, Pessa M (2009) Ordered nanostructures written directly by laser interference. Nanotechnology 20(12):125303-1–125303-5CrossRefGoogle Scholar
  13. 13.
    Cho KS, Mandal P, Kim K, Baek IH, Lee S, Lim H, Cho DJ, Kim S, Lee J, Rotermund F (2011) Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography. Opt Commun 284(10–11):2608–2612CrossRefGoogle Scholar
  14. 14.
    Lei M, Yao B, Rupp RA (2006) Structuring by multi-beam interference using symmetric pyramids. Opt Soc Am 14(12):5803–5811Google Scholar
  15. 15.
    Xu D, Chen KP, Ohlinger K, Lin Y (2011) Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure. Nanotechnology 22(3):035303-1–035303-8CrossRefGoogle Scholar
  16. 16.
    Hendrik J, Wielea K, Simon P (2003) Fabrication of periodic nanostructures by phase-controlled multiple-beam interference. Appl Phys Lett 83(23):4707–4709CrossRefGoogle Scholar
  17. 17.
    Rodriguez A, Echeverría M, Ellman M, Perez N, Verevkin YK, Peng CS, Berthou T, Wang Z, Ayerdi I, Savall J, Olaizola SM (2009) Laser interference lithography for nanoscale structuring of materials: from laboratory to industry. Microelectron Eng 86(4–6):937–940CrossRefGoogle Scholar
  18. 18.
    Peng CS, Dong X, Zhang W, Gu X.-Y, Zhou Y, Liu W.-P (2011) A laser interference lithography system. Chinese Patent application, No. 201110178877.6 June 2011Google Scholar
  19. 19.
    Alonso-González P, González L, González Y, Fuster D, Fernández-Martínez I, Martín-Sánchez J, Abelmann L (2007) New process for high optical quality InAs quantum dots grown on patterned GaAs(001) substrates. Nanotechnology 18(35):355302-1–5CrossRefGoogle Scholar
  20. 20.
    Peng CS, Tan C, Zhang W, Gu X-Y, Liu W-P (2012) Nano fabrication by laser interference. Int J Nanomanufact 8(3):212–215CrossRefGoogle Scholar
  21. 21.
    Wu Q, Gibbons JM, Park W (2008) Graded negative index lens by photonic crystals. Opt Express 16(21):16941–16949CrossRefGoogle Scholar
  22. 22.
    Kurt H, Colak E, Cakmak O, Caglayan H, Ozbay E (2008) The focusing effect of graded index photonic crystals. Appl Phys Lett 93(17):171108-1–171108-3CrossRefGoogle Scholar
  23. 23.
    Tan C, Peng CS, Petryakov VN, Verevkin YK, Zhang J, Wang Z, Olaizola SM, Thierry B, Stéphane T (2009) Fabricate planar photonic crystal gradient index lens by laser interference lithography. In: Proceeding of the IEEE Nanotechnology, IEEE Nano 2009, pp 450–453. Genoa, 26–30 Jul 2009Google Scholar
  24. 24.
    Kaneda N, Houshmand B, Itoh T (1997) FDTD analysis of dielectric resonators with curved surfaces. IEEE Trans Microwave Theory Tech 45(9):1645CrossRefGoogle Scholar
  25. 25.
    Tan C, Niemi T, Peng CS, Pessa M (2011) Focusing effect of a graded index photonic crystal lens. Opt Commun 284(12):3140–3143CrossRefGoogle Scholar
  26. 26.
    Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, ChichesterGoogle Scholar
  27. 27.
    Masumoto Y, Takagahara T (2002) Semiconductor quantum dots: physics, spectroscopy and applications. Springer, Berlin/HeidelbergGoogle Scholar
  28. 28.
    Bimberg D, Kuntz M, Laemmlin M (2005) Quantum dot photonic devices for lightwave communication. Appl Phys A 80(6):1179–1182CrossRefGoogle Scholar
  29. 29.
    Rabami E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496(4–6):227–235CrossRefGoogle Scholar
  30. 30.
    Schaller RD, Sykora M, Pietryga JM, Klimov VI (2006) Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett 6(3):424–429CrossRefGoogle Scholar
  31. 31.
    Ghosh S, Pradhan S, Bhattacharya P (2002) Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature. Appl Phys Lett 81(16):3055–3057CrossRefGoogle Scholar
  32. 32.
    Hopfer F, Kaiander I, Lochmann A, Mutig A, Bognar S, Kuntz M, Pohl UW, Haisler VA, Bimberg D (2006) Vertical-cavity surface-emitting quantum-dot laser with low threshold current grown by metal-organic vapor phase epitaxy. Appl Phys Lett 89(6):061105CrossRefGoogle Scholar
  33. 33.
    Liu HY, Badcock TJ, Groom KM, Hopkinson M, Gutierrez M, Childs DT, Jin C, Hogg RA, Sellers IR, Mowbray DJ (2006) High performance 1.3-mum InAs/GaAs quantum dot lasers with low threshold current and negative characteristic temperature. SPIE Proc 6184(43):618417–618418CrossRefGoogle Scholar
  34. 34.
    Miyamoto Y, Miyake Y, Asada M, Suematsu Y (1989) Threshold current density of GaInAsP/InP quantum-box lasers. IEEE J Quantum Electron QE-25(9):2001–2006CrossRefGoogle Scholar
  35. 35.
    Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43:187–210CrossRefGoogle Scholar
  36. 36.
    Michler P, Imamolu A, Mason MD, Carson PJ, Strouse GF, Buratto SK (2000) Quantum correlation among photons from a single quantum dot at room temperature. Nature 406:968–970CrossRefGoogle Scholar
  37. 37.
    Zrenner A, Beham E, Stufler S, Findeis F, Bichler M, Abstreiter G (2002) Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418:612–614CrossRefGoogle Scholar
  38. 38.
    Stangl J, Holy V, Bauer G (2004) Structural properties of self-organized semiconductor nanostructures. Rev Mod Phys 76(3):725–783CrossRefGoogle Scholar
  39. 39.
    Kim MD, Kim TW, Woo YD, Kim SG, Hong JS (2005) Formation process of and lattice parameter variation in InAs/GaAs quantum dots dependent on the growth parameters. J Crystal Growth 278(1–4):125–130CrossRefGoogle Scholar
  40. 40.
    Peng CS (2011/2012) A fabrication device and method for quantum dots. Chinese patent application & PCT patent application, No. 201110224270.7 Aug 2011 & PCT/CN2012/078013 Jul 2012Google Scholar
  41. 41.
    Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14(1):61–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian Liu
    • 1
  • Xuanming Duan
    • 2
  • Changsi Peng
    • 3
  1. 1.National Center for Nanoscience and TechnologyBeijingChina, People’s Republic
  2. 2.Technical Institute of Physics and Chemistry Chinese Academy of SciencesBeijingChina, People’s Republic
  3. 3.Institute of Information Optical EngineeringSoochow UniversitySuzhouChina, People’s Republic

Personalised recommendations