Skip to main content

Laser Micro-/Nanofabrication and Applications Based on Multiphoton Process

  • Chapter
  • First Online:
Novel Optical Technologies for Nanofabrication

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1805 Accesses

Abstract

Laser multiphoton micro-/nanofabrication, a promising technique for fabricating diverse microstructures owing to its unique three-dimensional (3D) processing capability, arbitrary designability, and high fabricating accuracy, has been widely employed in the development of micro/nanodevices and micro/nanoelectromechanical systems (MEMS/NEMS). There have been many studies that aimed at improving the spatial resolution, fabrication efficiency, as well as the rule and photochemical strategies of two-photon polymerization. Herein, we describe the basic principle of the nonlinear optical effect, multiphoton absorption, and related materials that designed for multiphoton nanofabrication to overcome the optical diffraction limit and achieve spatial resolution at nanometric scale. Consequently, we generally introduce the methods, typical optical setup, and scanning modes of multiphoton micro-/nanofabrication. After figuring out the latest progress of improvement of spatial resolution with femtosecond laser direct writing technique based on multiphoton lithography, we highlight the 3D micro-/nanostructures fabrication with functional materials, such as the hydrogel and biocompatible materials, photoresists, inorganic–organic polymers, and hybrid polymers containing metal ions. Finally, we present the applications of multiphoton micro-/nanofabrication in micro-/nanodevices and MEMS/NEMS, which have the potential to make major leaps in a broad range of applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee K-S, Kim RH, Yang D-Y, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681

    Article  CAS  Google Scholar 

  2. Totzeck M, Ulrich W, Göhnermeier A, Kaiser W (2007) Pushing deep ultraviolet lithography to its limits. Nat Photon 1:629–631

    Article  CAS  Google Scholar 

  3. Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photon Rev 2:100–111

    Article  CAS  Google Scholar 

  4. Dong XZ, Chen WQ, Zhao ZS, Duan XM (2008) Femtosecond laser two photon micronanofabrication and applications. Science in China Press 53: 2–13

    Google Scholar 

  5. Lin T-C, Chung S-J, Kim K-S, Wang X, He GS, Swiatkiewicz J, Pudavar HE, Prasad PN (2003) Organics and polymers with high two-photon activities and their applications. Adv Polym Sci 161:158–190

    Google Scholar 

  6. Goeppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys (Leipzig) 9:273–294

    Google Scholar 

  7. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  Google Scholar 

  8. Rumi M, Perry JW (2010) Two-photon absorption: an overview of measurements and principles. Adv Opt Photon 2:451–518

    Article  CAS  Google Scholar 

  9. Peticolas WL (1967) Multiphoton spectroscopy. Annu Rev Phys Chem 18:233–260

    Article  CAS  Google Scholar 

  10. McClain WM (1974) Two-photon molecular spectroscopy. Acc Chem Res 7:129–135

    Article  CAS  Google Scholar 

  11. Xu C, Webb WW (1997) Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In: Lakowicz J (ed) Nonlinear and two-photon-induced fluorescence, vol 5, Topics in fluorescence spectroscopy. Plenum, New York, pp 471–540

    Google Scholar 

  12. Bhawalkar JD, He GS, Prasad PN (1996) Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys 59:1041–1071

    Article  CAS  Google Scholar 

  13. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee I-YS, McCord-Maughon D, Qin J, Roeckel H, Rumi M, Wu X-L, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  CAS  Google Scholar 

  14. Chung SJ, Rumi M, Alain V, Barlow S, Perry JW, Marder SR (2005) Strong low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. J Am Chem Soc 127:10844–10845

    Article  CAS  Google Scholar 

  15. Zheng S, Beverina L, Barlow S, Zojer E, Fu J, Padilha LA, Fink C, Kwon O, Yi Y, Shuai Z, Van Stryland EW, Hagan DJ, Brédas J-L, Marder SR (2007) High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. Chem Commun 13:1372–1374

    Article  CAS  Google Scholar 

  16. Xing JF, Chen WQ, Gu J, Dong XZ, Takeyasu N, Tanaka T, Duan XM, Kawata S (2007) Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3,6-bis(phenylethynyl)carbazole derivatives. J Mater Chem 17:1433–1438

    Article  CAS  Google Scholar 

  17. Xing JF, Chen WQ, Dong XZ, Tanaka T, Fang XY, Duan XM, Kawata S (2007) Synthesis, optical and initiating properties of new two-photon polymerization initiators: 2,7-bis(styryl)anthraquinone derivatives. J Photochem Photobiol A Chem 189:398–404

    Article  CAS  Google Scholar 

  18. Gu J, Wang YL, Chen WQ, Dong XZ, Duan XM, Kawata S (2007) Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography. New J Chem 31:63–68

    Article  CAS  Google Scholar 

  19. Xing JF, Zheng ML, Chen WQ, Dong XZ, Takeyasu N, Tanaka T, Zhao ZS, Duan XM, Kawata S (2012) C 2v symmetrical two-photon polymerization initiators with anthracene core: synthesis, optical and initiating properties. Phys Chem Chem Phys 14:15785–15792

    Article  CAS  Google Scholar 

  20. Shi Q, Chen WQ, Xiang J, Duan XM, Zhan X (2011) A low-bandgap conjugated polymer based on squaraine with strong two-photon absorption. Macromolecules 44:3759–3765

    Article  CAS  Google Scholar 

  21. Huang X, Shi Q, Chen WQ, Zhu C, Zhou W, Zhao Z, Duan XM, Zhan X (2010) Low-bandgap conjugated donor-acceptor copolymers based on porphyrin with strong two-photon absorption. Macromolecules 43:9620–9626

    Article  CAS  Google Scholar 

  22. Zhou W, Feng J, Huang X, Duan XM, Zhan X (2012) A low-bandgap conjugated copolymer based on porphyrin and dithienocoronene diimide with strong two-photon absorption. Macromolecules 45:7823–7828

    Article  CAS  Google Scholar 

  23. Wang X, Jin F, Chen Z, Liu S, Wang X, Duan XM, Tao X, Jiang M (2011) A new family of dendrimers with naphthaline core and triphenylamine branching as a two-photon polymerization initiator. J Phys Chem C 115:776–784

    Article  CAS  Google Scholar 

  24. Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler CW (2003) Strong cooperative enhancement of two-photon absorption in dendrimers. J Phys Chem B 107:7540–7543

    Article  CAS  Google Scholar 

  25. Lee K-S, Yang D-Y, Park SH, Kim RH (2006) Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym Adv Technol 17:72–82

    Article  CAS  Google Scholar 

  26. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA (2007) Multiphoton fabrication. Angew Chem Int Ed 46:6238–6258

    Article  CAS  Google Scholar 

  27. Zhou W, Kuebler SM, Braun KL, Yu T, Cammack JK, Ober CK, Perry JW, Marder SR (2002) An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296:1106–1109

    Article  CAS  Google Scholar 

  28. Li H, Jin F, Chen WQ, Duan XM (2012) New type positive molecular glass resists for multi-photon lithography. Imaging Sci Photochem 30:347–357

    Google Scholar 

  29. Dong XZ, Zhao ZS, Duan XM (2008) Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication. Appl Phys Lett 92:091113

    Article  CAS  Google Scholar 

  30. Sun HB, Tanaka T, Kawata S (2002) Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett 80:3673–3675

    Article  CAS  Google Scholar 

  31. Sun HB, Tanaka K, Kim M-S, Lee K-S, Kawata S (2003) Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl Phys Lett 83:1104–1106

    Article  CAS  Google Scholar 

  32. Tanaka K, Sun HB, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization based laser nanowriting. Appl Phys Lett 86:071122

    Article  CAS  Google Scholar 

  33. Takada K, Sun HB, Kawata S (2006) The study on spatial resolution in two-photon induced polymerization. Proc SPIE 6110:61100A

    Article  CAS  Google Scholar 

  34. Tan D, Li Y, Qi F, Yang H, Gong Q, Dong XZ, Duan XM (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106

    Article  CAS  Google Scholar 

  35. Lim TW, Park SH, Yang D-Y (2005) Contour offset algorithm for precise patterning in two-photon polymerization. Microelectron Eng 77:382–388

    Article  CAS  Google Scholar 

  36. Park SH, Lim TW, Yang D-Y, Yi SW, Kong HJ (2005) Direct fabrication of micropatterns and three-dimensional structures using nanoreplication-printing (nRP) process. Sensor Mater 17:065–075

    CAS  Google Scholar 

  37. Matsuo S, Juodkazis S, Misawa S (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A 80:683–685

    Article  CAS  Google Scholar 

  38. Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S (2005) Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86:044102

    Article  CAS  Google Scholar 

  39. Dong XZ, Zhao ZS, Duan XM (2007) Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl Phys Lett 91:124103

    Article  CAS  Google Scholar 

  40. Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698

    Article  CAS  Google Scholar 

  41. Tanaka T, Sun HB, Kawata S (2002) Rapid sub-diffraction-limit laser microÕnanoprocessing in a threshold material system. Appl Phys Lett 80:312–314

    Article  CAS  Google Scholar 

  42. Harke B, Dallari W, Grancini G, Fazzi D, Brandi F, Petrozza A, Diaspro A (2013) Polymerization inhibition by triplet state absorption for nanometer-scale lithography. Adv Mater 25:904–909

    Article  CAS  Google Scholar 

  43. Lu WE, Dong XZ, Chen WQ, Zhao ZS, Duan XM (2011) Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J Mater Chem 21:5650–5659

    Article  CAS  Google Scholar 

  44. Lu WE, Chen WQ, Zheng ML, Dong XZ, Zhao ZS, Duan XM (2013) Two-photon induced photopolymerization using photoinitiator with an intramolecular radical quenching moiety for nanolithography. J Nanosci Nanotechnol 13:1343–1346

    Article  CAS  Google Scholar 

  45. Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C, Pikulin A, Bityurin N, Vamvakaki M, Farsari M (2012) Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6:2302–2311

    Article  CAS  Google Scholar 

  46. Xing JF, Dong XZ, Chen WQ, Duan XM, Takeyasu N, Tanaka T, Kawata S (2007) Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl Phys Lett 90:131106

    Article  CAS  Google Scholar 

  47. Song Y, Dong XZ, Zhao ZS, Duan XM (2011) Investigation into ultimate resolution by femtosecond laser two-photon fabrication technique. High Power Laser Part Beams 23:1780–1784

    Article  Google Scholar 

  48. Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang Y, Marder SR, Perry JW (2002) Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 14:194–198

    Article  CAS  Google Scholar 

  49. Cao YY, Takeyasu N, Tanaka T, Duan XM, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5:1144–1148

    CAS  Google Scholar 

  50. Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl Phys Lett 88:081107

    Article  CAS  Google Scholar 

  51. Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179

    Article  CAS  Google Scholar 

  52. Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nagasawa H, Nakamoto M, Yamaguchi T, Yase K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527

    Article  Google Scholar 

  53. Kaneko K, Sun HB, Duan XM, Kawata S (2003) Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83:1426–1428

    Article  CAS  Google Scholar 

  54. Ishikawa A, Tanaka T, Kawata S (2006) Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl Phys Lett 89:113102

    Article  CAS  Google Scholar 

  55. Khetan S, Burdick JA (2011) Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 7:830–838

    Article  CAS  Google Scholar 

  56. Shin HS, Kim SY, Lee YM (1997) Indomethacin release behaviors from pH and thermoresponsive poly(vinyl alcohol) and poly(acrylic acid) IPN hydrogels for site-specific drug delivery. J Appl Polym Sci 65:685–693

    Article  CAS  Google Scholar 

  57. Chang CW, Van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164

    Article  CAS  Google Scholar 

  58. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  59. Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4:1214–1223

    Article  CAS  Google Scholar 

  60. Gawel K, Stokke BT (2011) Logic swelling response of DNA-polymer hybrid hydrogel. Soft Matter 7:4615–4618

    Article  CAS  Google Scholar 

  61. Takada K, Miyazaki T, Tanaka N, Tatsuma T (2006) Three-dimensional motion and transformation of a photoelectrochemical actuator. Chem Commun 19:2024–2026

    Article  CAS  Google Scholar 

  62. Otero TF, Sansinena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10:491–494

    Article  CAS  Google Scholar 

  63. Kuhn PW, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516

    Article  CAS  Google Scholar 

  64. Siegel RA, Firestone BA (1988) pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21:3254–3259

    Article  CAS  Google Scholar 

  65. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527

    Article  CAS  Google Scholar 

  66. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  CAS  Google Scholar 

  67. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  68. Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  CAS  Google Scholar 

  69. Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4:1410–1416

    Article  CAS  Google Scholar 

  70. Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer 41:3693–3704

    Article  CAS  Google Scholar 

  71. Thornton PD, McConnell G, Ulijn RV (2005) Enzyme responsive polymer hydrogel beads. Chem Commun 47:5913–5915

    Article  CAS  Google Scholar 

  72. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484

    Article  CAS  Google Scholar 

  73. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695

    Article  CAS  Google Scholar 

  74. Watanabe T, Akiyama M, Totani K, Kuebler SM, Stellacci F, Wenseleers W, Braun K, Marder SR, Perry JW (2002) Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization. Adv Funct Mater 12:611–614

    Article  CAS  Google Scholar 

  75. Kaehr B, Shear JB (2008) Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci USA 105:8850–8854

    Article  CAS  Google Scholar 

  76. Xiong Z, Zheng ML, Dong XZ, Chen WQ, Jin F, Zhao ZS, Duan XM (2011) Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 7:10353–10359

    Article  CAS  Google Scholar 

  77. Claeyssens F, Hasan EA, Gaidukeviciute A, Achilleos DS, Ranella A, Reinhardt C, Ovsianikov A, Shizhou X, Fotakis C, Vamvakaki M, Chichkov BN, Farsari M (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25:3219–3223

    Article  CAS  Google Scholar 

  78. Correa DS, Tayalia P, Cosendey G, dos Santos DS, Aroca RF, Mazur E, Mendonca CR (2009) Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J Nanosci Nanotechnol 9:5845–5849

    Article  CAS  Google Scholar 

  79. Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543

    Article  CAS  Google Scholar 

  80. Duan XM, Sun HB, Kaneko K, Kawata S (2004) Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication. Thin Solid Films 453–454:518–521

    Article  CAS  Google Scholar 

  81. Sun ZB, Dong XZ, Chen WQ, Nakanishi S, Duan XM, Kawata S (2008) Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Adv Mater 20:914–919

    Article  CAS  Google Scholar 

  82. Sun ZB, Dong XZ, Chen WQ, Shoji S, Duan XM, Kawata S (2008) Two- and three-dimensional micro/nanostructure patterning of CdS–polymer nanocomposites with a laser interference technique and in situ synthesis. Nanotechnology 19:035611

    Article  CAS  Google Scholar 

  83. Kuznetsov AI, Kiyan R, Chichkov BN (2010) Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Opt Express 18:21198–21203

    Article  CAS  Google Scholar 

  84. Kuo WS, Lien CH, Cho KC, Chang CY, Lin CY, Huang LLH, Campagnola PJ, Dong CY, Chen SJ (2010) Multiphoton fabrication of freeform polymer microstructures with gold nanorods. Opt Express 18:27550–27559

    Article  CAS  Google Scholar 

  85. Lien CH, Kuo WS, Cho KC, Lin CY, Su YD, Huang LLH, Campagnola PJ, Dong CY, Chen SJ (2011) Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry. Opt Express 19:6260–6268

    Article  CAS  Google Scholar 

  86. Masui K, Shoji S, Ushiba S, Duan XM, Kawata S (2012) Femtosecond laser fabrication of gold nanorod/polymer composite microstructures. Proc SPIE 8457:84571Y

    Article  CAS  Google Scholar 

  87. Masui K, Shoji S, Asaba K, Rodgers TC, Jin F, Duan XM, Kawata S (2011) Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Opt Express 19:22786–22796

    Article  CAS  Google Scholar 

  88. Masui K, Shoji S, Jin F, Duan XM, Kawata S (2012) Plasmonic resonance enhancement of single gold nanorod in two-photon photopolymerization for fabrication of polymer/metal nanocomposites. Appl Phys A 106:773–778

    Article  CAS  Google Scholar 

  89. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303

    Article  CAS  Google Scholar 

  90. Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262

    Article  CAS  Google Scholar 

  91. Vasilantonakis N, Terzaki K, Sakellari I, Purlys V, Gray D, Soukoulis CM, Vamvakaki M, Kafesaki M, Farsari M (2012) Three-dimensional metallic photonic crystals with optical bandgaps. Adv Mater 24:1101–1105

    Article  CAS  Google Scholar 

  92. Wu PW, Cheng W, Martini IB, Dunn B, Schwartz BJ, Yablonovitch E (2000) Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix. Adv Mater 12:1438–1441

    Article  CAS  Google Scholar 

  93. Cao YY, Dong XZ, Takeyasu N, Tanaka T, Zhao ZS, Duan XM, Kawata S (2009) Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication. Appl Phys A 96:453–458

    Article  CAS  Google Scholar 

  94. Xu BB, Xia H, Niu LG, Zhang YL, Sun K, Chen QD, Xu Y, Lv ZQ, Li ZH, Misawa H, Sun HB (2010) Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6:1276–1766

    Google Scholar 

  95. Jin W, Zheng ML, Cao YY, Dong XZ, Zhao ZS, Duan XM (2011) Morphology modification of silver microstructures fabricated by multiphoton photoreduction. J Nanosci Nanotechnol 11:8556–8560

    Article  CAS  Google Scholar 

  96. Jia B, Kang H, Li J, Gu M (2009) Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method. Opt Lett 34:1918–1920

    Article  CAS  Google Scholar 

  97. Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. Appl Phys Lett 74:786–788

    Article  CAS  Google Scholar 

  98. Sun ZB, Dong XZ, Nakanishi S, Chen WQ, Duan XM, Kawata S (2007) Log-pile photonic crystal of CdS–polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis. Appl Phys A 86:427–431

    Article  CAS  Google Scholar 

  99. Kaneko K, Sun HB, Duan XM, Kawata S (2003) Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication. Appl Phys Lett 83:2091–2093

    Article  CAS  Google Scholar 

  100. Dong XZ, Ya Q, Sheng XZ, Li ZY, Zhao ZS, Duan XM (2008) Photonic bandgap of gradient quasidiamond lattice photonic crystal. Appl Phys Lett 92:231103

    Article  CAS  Google Scholar 

  101. Dong XZ, Zhao ZS, Duan XM (2008) Gradient quasidiamond lattice photonic crystal fabricated by two-photon polymerization nanofabrication. Mater Eng 10:118–125

    Google Scholar 

  102. Seet KK, Mizeikis V, Matsuo S, Joudkazis S, Misawa H (2005) Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv Mater 17:541–545

    Article  CAS  Google Scholar 

  103. Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251

    Article  CAS  Google Scholar 

  104. Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135

    Article  CAS  Google Scholar 

  105. Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101

    Article  CAS  Google Scholar 

  106. Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448

    Article  CAS  Google Scholar 

  107. Wang J, He Y, Xia H, Niu LG, Zhang R, Chen QD, Zhang YL, Li YF, Zeng SJ, Qin JH, Lin BC, Sun HB (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996

    Article  CAS  Google Scholar 

  108. Kumi G, Yanez CO, Belfieldbc KD, Fourkas JT (2010) High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10:1057–1060

    Article  CAS  Google Scholar 

  109. Xia H, Wang J, Tian Y, Chen QD, Du XB, Zhang YL, He Y, Sun HB (2010) Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater 22:3204–3207

    Article  CAS  Google Scholar 

  110. Wang WK, Sun ZB, Zheng ML, Dong XZ, Zhao ZS, Duan XM (2011) Magnetic nickel-phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerization. J Phys Chem C 115:11275–11281

    Article  CAS  Google Scholar 

  111. Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515

    Article  CAS  Google Scholar 

  112. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339

    Article  CAS  Google Scholar 

  113. Li CF, Dong XZ, Jin F, Jin W, Chen WQ, Zhao ZS, Duan XM (2007) Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization. Appl Phys A 89:145–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Q., Duan, X., Peng, C. (2014). Laser Micro-/Nanofabrication and Applications Based on Multiphoton Process. In: Novel Optical Technologies for Nanofabrication. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40387-3_4

Download citation

Publish with us

Policies and ethics