Advertisement

Laser Micro-/Nanofabrication and Applications Based on Multiphoton Process

  • Qian Liu
  • Xuanming Duan
  • Changsi Peng
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Laser multiphoton micro-/nanofabrication, a promising technique for fabricating diverse microstructures owing to its unique three-dimensional (3D) processing capability, arbitrary designability, and high fabricating accuracy, has been widely employed in the development of micro/nanodevices and micro/nanoelectromechanical systems (MEMS/NEMS). There have been many studies that aimed at improving the spatial resolution, fabrication efficiency, as well as the rule and photochemical strategies of two-photon polymerization. Herein, we describe the basic principle of the nonlinear optical effect, multiphoton absorption, and related materials that designed for multiphoton nanofabrication to overcome the optical diffraction limit and achieve spatial resolution at nanometric scale. Consequently, we generally introduce the methods, typical optical setup, and scanning modes of multiphoton micro-/nanofabrication. After figuring out the latest progress of improvement of spatial resolution with femtosecond laser direct writing technique based on multiphoton lithography, we highlight the 3D micro-/nanostructures fabrication with functional materials, such as the hydrogel and biocompatible materials, photoresists, inorganic–organic polymers, and hybrid polymers containing metal ions. Finally, we present the applications of multiphoton micro-/nanofabrication in micro-/nanodevices and MEMS/NEMS, which have the potential to make major leaps in a broad range of applications in the future.

Keywords

Photonic Crystal Femtosecond Laser Gold Nanorod Multiphoton Absorption Nonlinear Optical Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee K-S, Kim RH, Yang D-Y, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681CrossRefGoogle Scholar
  2. 2.
    Totzeck M, Ulrich W, Göhnermeier A, Kaiser W (2007) Pushing deep ultraviolet lithography to its limits. Nat Photon 1:629–631CrossRefGoogle Scholar
  3. 3.
    Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photon Rev 2:100–111CrossRefGoogle Scholar
  4. 4.
    Dong XZ, Chen WQ, Zhao ZS, Duan XM (2008) Femtosecond laser two photon micronanofabrication and applications. Science in China Press 53: 2–13Google Scholar
  5. 5.
    Lin T-C, Chung S-J, Kim K-S, Wang X, He GS, Swiatkiewicz J, Pudavar HE, Prasad PN (2003) Organics and polymers with high two-photon activities and their applications. Adv Polym Sci 161:158–190Google Scholar
  6. 6.
    Goeppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys (Leipzig) 9:273–294Google Scholar
  7. 7.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494CrossRefGoogle Scholar
  8. 8.
    Rumi M, Perry JW (2010) Two-photon absorption: an overview of measurements and principles. Adv Opt Photon 2:451–518CrossRefGoogle Scholar
  9. 9.
    Peticolas WL (1967) Multiphoton spectroscopy. Annu Rev Phys Chem 18:233–260CrossRefGoogle Scholar
  10. 10.
    McClain WM (1974) Two-photon molecular spectroscopy. Acc Chem Res 7:129–135CrossRefGoogle Scholar
  11. 11.
    Xu C, Webb WW (1997) Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In: Lakowicz J (ed) Nonlinear and two-photon-induced fluorescence, vol 5, Topics in fluorescence spectroscopy. Plenum, New York, pp 471–540Google Scholar
  12. 12.
    Bhawalkar JD, He GS, Prasad PN (1996) Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys 59:1041–1071CrossRefGoogle Scholar
  13. 13.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee I-YS, McCord-Maughon D, Qin J, Roeckel H, Rumi M, Wu X-L, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three dimensional optical data storage and microfabrication. Nature 398:51–54CrossRefGoogle Scholar
  14. 14.
    Chung SJ, Rumi M, Alain V, Barlow S, Perry JW, Marder SR (2005) Strong low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. J Am Chem Soc 127:10844–10845CrossRefGoogle Scholar
  15. 15.
    Zheng S, Beverina L, Barlow S, Zojer E, Fu J, Padilha LA, Fink C, Kwon O, Yi Y, Shuai Z, Van Stryland EW, Hagan DJ, Brédas J-L, Marder SR (2007) High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. Chem Commun 13:1372–1374CrossRefGoogle Scholar
  16. 16.
    Xing JF, Chen WQ, Gu J, Dong XZ, Takeyasu N, Tanaka T, Duan XM, Kawata S (2007) Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3,6-bis(phenylethynyl)carbazole derivatives. J Mater Chem 17:1433–1438CrossRefGoogle Scholar
  17. 17.
    Xing JF, Chen WQ, Dong XZ, Tanaka T, Fang XY, Duan XM, Kawata S (2007) Synthesis, optical and initiating properties of new two-photon polymerization initiators: 2,7-bis(styryl)anthraquinone derivatives. J Photochem Photobiol A Chem 189:398–404CrossRefGoogle Scholar
  18. 18.
    Gu J, Wang YL, Chen WQ, Dong XZ, Duan XM, Kawata S (2007) Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography. New J Chem 31:63–68CrossRefGoogle Scholar
  19. 19.
    Xing JF, Zheng ML, Chen WQ, Dong XZ, Takeyasu N, Tanaka T, Zhao ZS, Duan XM, Kawata S (2012) C 2v symmetrical two-photon polymerization initiators with anthracene core: synthesis, optical and initiating properties. Phys Chem Chem Phys 14:15785–15792CrossRefGoogle Scholar
  20. 20.
    Shi Q, Chen WQ, Xiang J, Duan XM, Zhan X (2011) A low-bandgap conjugated polymer based on squaraine with strong two-photon absorption. Macromolecules 44:3759–3765CrossRefGoogle Scholar
  21. 21.
    Huang X, Shi Q, Chen WQ, Zhu C, Zhou W, Zhao Z, Duan XM, Zhan X (2010) Low-bandgap conjugated donor-acceptor copolymers based on porphyrin with strong two-photon absorption. Macromolecules 43:9620–9626CrossRefGoogle Scholar
  22. 22.
    Zhou W, Feng J, Huang X, Duan XM, Zhan X (2012) A low-bandgap conjugated copolymer based on porphyrin and dithienocoronene diimide with strong two-photon absorption. Macromolecules 45:7823–7828CrossRefGoogle Scholar
  23. 23.
    Wang X, Jin F, Chen Z, Liu S, Wang X, Duan XM, Tao X, Jiang M (2011) A new family of dendrimers with naphthaline core and triphenylamine branching as a two-photon polymerization initiator. J Phys Chem C 115:776–784CrossRefGoogle Scholar
  24. 24.
    Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler CW (2003) Strong cooperative enhancement of two-photon absorption in dendrimers. J Phys Chem B 107:7540–7543CrossRefGoogle Scholar
  25. 25.
    Lee K-S, Yang D-Y, Park SH, Kim RH (2006) Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym Adv Technol 17:72–82CrossRefGoogle Scholar
  26. 26.
    LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA (2007) Multiphoton fabrication. Angew Chem Int Ed 46:6238–6258CrossRefGoogle Scholar
  27. 27.
    Zhou W, Kuebler SM, Braun KL, Yu T, Cammack JK, Ober CK, Perry JW, Marder SR (2002) An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296:1106–1109CrossRefGoogle Scholar
  28. 28.
    Li H, Jin F, Chen WQ, Duan XM (2012) New type positive molecular glass resists for multi-photon lithography. Imaging Sci Photochem 30:347–357Google Scholar
  29. 29.
    Dong XZ, Zhao ZS, Duan XM (2008) Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication. Appl Phys Lett 92:091113CrossRefGoogle Scholar
  30. 30.
    Sun HB, Tanaka T, Kawata S (2002) Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett 80:3673–3675CrossRefGoogle Scholar
  31. 31.
    Sun HB, Tanaka K, Kim M-S, Lee K-S, Kawata S (2003) Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl Phys Lett 83:1104–1106CrossRefGoogle Scholar
  32. 32.
    Tanaka K, Sun HB, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization based laser nanowriting. Appl Phys Lett 86:071122CrossRefGoogle Scholar
  33. 33.
    Takada K, Sun HB, Kawata S (2006) The study on spatial resolution in two-photon induced polymerization. Proc SPIE 6110:61100ACrossRefGoogle Scholar
  34. 34.
    Tan D, Li Y, Qi F, Yang H, Gong Q, Dong XZ, Duan XM (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106CrossRefGoogle Scholar
  35. 35.
    Lim TW, Park SH, Yang D-Y (2005) Contour offset algorithm for precise patterning in two-photon polymerization. Microelectron Eng 77:382–388CrossRefGoogle Scholar
  36. 36.
    Park SH, Lim TW, Yang D-Y, Yi SW, Kong HJ (2005) Direct fabrication of micropatterns and three-dimensional structures using nanoreplication-printing (nRP) process. Sensor Mater 17:065–075Google Scholar
  37. 37.
    Matsuo S, Juodkazis S, Misawa S (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A 80:683–685CrossRefGoogle Scholar
  38. 38.
    Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S (2005) Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86:044102CrossRefGoogle Scholar
  39. 39.
    Dong XZ, Zhao ZS, Duan XM (2007) Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl Phys Lett 91:124103CrossRefGoogle Scholar
  40. 40.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698CrossRefGoogle Scholar
  41. 41.
    Tanaka T, Sun HB, Kawata S (2002) Rapid sub-diffraction-limit laser microÕnanoprocessing in a threshold material system. Appl Phys Lett 80:312–314CrossRefGoogle Scholar
  42. 42.
    Harke B, Dallari W, Grancini G, Fazzi D, Brandi F, Petrozza A, Diaspro A (2013) Polymerization inhibition by triplet state absorption for nanometer-scale lithography. Adv Mater 25:904–909CrossRefGoogle Scholar
  43. 43.
    Lu WE, Dong XZ, Chen WQ, Zhao ZS, Duan XM (2011) Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J Mater Chem 21:5650–5659CrossRefGoogle Scholar
  44. 44.
    Lu WE, Chen WQ, Zheng ML, Dong XZ, Zhao ZS, Duan XM (2013) Two-photon induced photopolymerization using photoinitiator with an intramolecular radical quenching moiety for nanolithography. J Nanosci Nanotechnol 13:1343–1346CrossRefGoogle Scholar
  45. 45.
    Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C, Pikulin A, Bityurin N, Vamvakaki M, Farsari M (2012) Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6:2302–2311CrossRefGoogle Scholar
  46. 46.
    Xing JF, Dong XZ, Chen WQ, Duan XM, Takeyasu N, Tanaka T, Kawata S (2007) Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl Phys Lett 90:131106CrossRefGoogle Scholar
  47. 47.
    Song Y, Dong XZ, Zhao ZS, Duan XM (2011) Investigation into ultimate resolution by femtosecond laser two-photon fabrication technique. High Power Laser Part Beams 23:1780–1784CrossRefGoogle Scholar
  48. 48.
    Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang Y, Marder SR, Perry JW (2002) Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 14:194–198CrossRefGoogle Scholar
  49. 49.
    Cao YY, Takeyasu N, Tanaka T, Duan XM, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5:1144–1148Google Scholar
  50. 50.
    Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl Phys Lett 88:081107CrossRefGoogle Scholar
  51. 51.
    Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179CrossRefGoogle Scholar
  52. 52.
    Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nagasawa H, Nakamoto M, Yamaguchi T, Yase K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527CrossRefGoogle Scholar
  53. 53.
    Kaneko K, Sun HB, Duan XM, Kawata S (2003) Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83:1426–1428CrossRefGoogle Scholar
  54. 54.
    Ishikawa A, Tanaka T, Kawata S (2006) Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl Phys Lett 89:113102CrossRefGoogle Scholar
  55. 55.
    Khetan S, Burdick JA (2011) Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter 7:830–838CrossRefGoogle Scholar
  56. 56.
    Shin HS, Kim SY, Lee YM (1997) Indomethacin release behaviors from pH and thermoresponsive poly(vinyl alcohol) and poly(acrylic acid) IPN hydrogels for site-specific drug delivery. J Appl Polym Sci 65:685–693CrossRefGoogle Scholar
  57. 57.
    Chang CW, Van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164CrossRefGoogle Scholar
  58. 58.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879CrossRefGoogle Scholar
  59. 59.
    Kim S, Healy KE (2003) Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4:1214–1223CrossRefGoogle Scholar
  60. 60.
    Gawel K, Stokke BT (2011) Logic swelling response of DNA-polymer hybrid hydrogel. Soft Matter 7:4615–4618CrossRefGoogle Scholar
  61. 61.
    Takada K, Miyazaki T, Tanaka N, Tatsuma T (2006) Three-dimensional motion and transformation of a photoelectrochemical actuator. Chem Commun 19:2024–2026CrossRefGoogle Scholar
  62. 62.
    Otero TF, Sansinena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10:491–494CrossRefGoogle Scholar
  63. 63.
    Kuhn PW, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516CrossRefGoogle Scholar
  64. 64.
    Siegel RA, Firestone BA (1988) pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21:3254–3259CrossRefGoogle Scholar
  65. 65.
    Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527CrossRefGoogle Scholar
  66. 66.
    Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRefGoogle Scholar
  67. 67.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRefGoogle Scholar
  68. 68.
    Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRefGoogle Scholar
  69. 69.
    Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4:1410–1416CrossRefGoogle Scholar
  70. 70.
    Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer 41:3693–3704CrossRefGoogle Scholar
  71. 71.
    Thornton PD, McConnell G, Ulijn RV (2005) Enzyme responsive polymer hydrogel beads. Chem Commun 47:5913–5915CrossRefGoogle Scholar
  72. 72.
    Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484CrossRefGoogle Scholar
  73. 73.
    Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695CrossRefGoogle Scholar
  74. 74.
    Watanabe T, Akiyama M, Totani K, Kuebler SM, Stellacci F, Wenseleers W, Braun K, Marder SR, Perry JW (2002) Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization. Adv Funct Mater 12:611–614CrossRefGoogle Scholar
  75. 75.
    Kaehr B, Shear JB (2008) Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci USA 105:8850–8854CrossRefGoogle Scholar
  76. 76.
    Xiong Z, Zheng ML, Dong XZ, Chen WQ, Jin F, Zhao ZS, Duan XM (2011) Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 7:10353–10359CrossRefGoogle Scholar
  77. 77.
    Claeyssens F, Hasan EA, Gaidukeviciute A, Achilleos DS, Ranella A, Reinhardt C, Ovsianikov A, Shizhou X, Fotakis C, Vamvakaki M, Chichkov BN, Farsari M (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25:3219–3223CrossRefGoogle Scholar
  78. 78.
    Correa DS, Tayalia P, Cosendey G, dos Santos DS, Aroca RF, Mazur E, Mendonca CR (2009) Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J Nanosci Nanotechnol 9:5845–5849CrossRefGoogle Scholar
  79. 79.
    Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543CrossRefGoogle Scholar
  80. 80.
    Duan XM, Sun HB, Kaneko K, Kawata S (2004) Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication. Thin Solid Films 453–454:518–521CrossRefGoogle Scholar
  81. 81.
    Sun ZB, Dong XZ, Chen WQ, Nakanishi S, Duan XM, Kawata S (2008) Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Adv Mater 20:914–919CrossRefGoogle Scholar
  82. 82.
    Sun ZB, Dong XZ, Chen WQ, Shoji S, Duan XM, Kawata S (2008) Two- and three-dimensional micro/nanostructure patterning of CdS–polymer nanocomposites with a laser interference technique and in situ synthesis. Nanotechnology 19:035611CrossRefGoogle Scholar
  83. 83.
    Kuznetsov AI, Kiyan R, Chichkov BN (2010) Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Opt Express 18:21198–21203CrossRefGoogle Scholar
  84. 84.
    Kuo WS, Lien CH, Cho KC, Chang CY, Lin CY, Huang LLH, Campagnola PJ, Dong CY, Chen SJ (2010) Multiphoton fabrication of freeform polymer microstructures with gold nanorods. Opt Express 18:27550–27559CrossRefGoogle Scholar
  85. 85.
    Lien CH, Kuo WS, Cho KC, Lin CY, Su YD, Huang LLH, Campagnola PJ, Dong CY, Chen SJ (2011) Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry. Opt Express 19:6260–6268CrossRefGoogle Scholar
  86. 86.
    Masui K, Shoji S, Ushiba S, Duan XM, Kawata S (2012) Femtosecond laser fabrication of gold nanorod/polymer composite microstructures. Proc SPIE 8457:84571YCrossRefGoogle Scholar
  87. 87.
    Masui K, Shoji S, Asaba K, Rodgers TC, Jin F, Duan XM, Kawata S (2011) Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Opt Express 19:22786–22796CrossRefGoogle Scholar
  88. 88.
    Masui K, Shoji S, Jin F, Duan XM, Kawata S (2012) Plasmonic resonance enhancement of single gold nanorod in two-photon photopolymerization for fabrication of polymer/metal nanocomposites. Appl Phys A 106:773–778CrossRefGoogle Scholar
  89. 89.
    Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303CrossRefGoogle Scholar
  90. 90.
    Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262CrossRefGoogle Scholar
  91. 91.
    Vasilantonakis N, Terzaki K, Sakellari I, Purlys V, Gray D, Soukoulis CM, Vamvakaki M, Kafesaki M, Farsari M (2012) Three-dimensional metallic photonic crystals with optical bandgaps. Adv Mater 24:1101–1105CrossRefGoogle Scholar
  92. 92.
    Wu PW, Cheng W, Martini IB, Dunn B, Schwartz BJ, Yablonovitch E (2000) Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix. Adv Mater 12:1438–1441CrossRefGoogle Scholar
  93. 93.
    Cao YY, Dong XZ, Takeyasu N, Tanaka T, Zhao ZS, Duan XM, Kawata S (2009) Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication. Appl Phys A 96:453–458CrossRefGoogle Scholar
  94. 94.
    Xu BB, Xia H, Niu LG, Zhang YL, Sun K, Chen QD, Xu Y, Lv ZQ, Li ZH, Misawa H, Sun HB (2010) Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6:1276–1766Google Scholar
  95. 95.
    Jin W, Zheng ML, Cao YY, Dong XZ, Zhao ZS, Duan XM (2011) Morphology modification of silver microstructures fabricated by multiphoton photoreduction. J Nanosci Nanotechnol 11:8556–8560CrossRefGoogle Scholar
  96. 96.
    Jia B, Kang H, Li J, Gu M (2009) Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method. Opt Lett 34:1918–1920CrossRefGoogle Scholar
  97. 97.
    Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. Appl Phys Lett 74:786–788CrossRefGoogle Scholar
  98. 98.
    Sun ZB, Dong XZ, Nakanishi S, Chen WQ, Duan XM, Kawata S (2007) Log-pile photonic crystal of CdS–polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis. Appl Phys A 86:427–431CrossRefGoogle Scholar
  99. 99.
    Kaneko K, Sun HB, Duan XM, Kawata S (2003) Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication. Appl Phys Lett 83:2091–2093CrossRefGoogle Scholar
  100. 100.
    Dong XZ, Ya Q, Sheng XZ, Li ZY, Zhao ZS, Duan XM (2008) Photonic bandgap of gradient quasidiamond lattice photonic crystal. Appl Phys Lett 92:231103CrossRefGoogle Scholar
  101. 101.
    Dong XZ, Zhao ZS, Duan XM (2008) Gradient quasidiamond lattice photonic crystal fabricated by two-photon polymerization nanofabrication. Mater Eng 10:118–125Google Scholar
  102. 102.
    Seet KK, Mizeikis V, Matsuo S, Joudkazis S, Misawa H (2005) Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv Mater 17:541–545CrossRefGoogle Scholar
  103. 103.
    Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251CrossRefGoogle Scholar
  104. 104.
    Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135CrossRefGoogle Scholar
  105. 105.
    Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101CrossRefGoogle Scholar
  106. 106.
    Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448CrossRefGoogle Scholar
  107. 107.
    Wang J, He Y, Xia H, Niu LG, Zhang R, Chen QD, Zhang YL, Li YF, Zeng SJ, Qin JH, Lin BC, Sun HB (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996CrossRefGoogle Scholar
  108. 108.
    Kumi G, Yanez CO, Belfieldbc KD, Fourkas JT (2010) High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10:1057–1060CrossRefGoogle Scholar
  109. 109.
    Xia H, Wang J, Tian Y, Chen QD, Du XB, Zhang YL, He Y, Sun HB (2010) Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater 22:3204–3207CrossRefGoogle Scholar
  110. 110.
    Wang WK, Sun ZB, Zheng ML, Dong XZ, Zhao ZS, Duan XM (2011) Magnetic nickel-phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerization. J Phys Chem C 115:11275–11281CrossRefGoogle Scholar
  111. 111.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515CrossRefGoogle Scholar
  112. 112.
    Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339CrossRefGoogle Scholar
  113. 113.
    Li CF, Dong XZ, Jin F, Jin W, Chen WQ, Zhao ZS, Duan XM (2007) Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization. Appl Phys A 89:145–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian Liu
    • 1
  • Xuanming Duan
    • 2
  • Changsi Peng
    • 3
  1. 1.National Center for Nanoscience and TechnologyBeijingChina, People’s Republic
  2. 2.Technical Institute of Physics and Chemistry Chinese Academy of SciencesBeijingChina, People’s Republic
  3. 3.Institute of Information Optical EngineeringSoochow UniversitySuzhouChina, People’s Republic

Personalised recommendations