Advertisement

Laser Path-Guided Wrinkle Structures

  • Qian Liu
  • Xuanming Duan
  • Changsi Peng
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

In this chapter, we describe one kind of micro-/nanostructure based on the high-ordered, designable, and defect-free wrinkling, which is fabricated by using laser path-guided technique. It is a cheap and easy way to realize large-area fabrication of surface complex structures. The mechanism associated with this method is studied in detail, and various potential applications are also discussed.

Keywords

Metal Film Target Pattern Fresnel Lens Laser Direct Writing Compliant Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GW (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149CrossRefGoogle Scholar
  2. 2.
    Harrison C, Stafford CM, Zhang W, Karim A (2004) Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 85:4016–4018CrossRefGoogle Scholar
  3. 3.
    Chan EP, Crosby AJ (2006) Fabricating microlens arrays by surface wrinkling. Adv Mater 18:3238–3242CrossRefGoogle Scholar
  4. 4.
    Sun Y, Choi WM, Jiang H, Huang Y, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1:201–207CrossRefGoogle Scholar
  5. 5.
    Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297CrossRefGoogle Scholar
  6. 6.
    Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, VanLandingham MR, Kim H-C, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3:545–550CrossRefGoogle Scholar
  7. 7.
    Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang R (2006) Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39:5095–5099CrossRefGoogle Scholar
  8. 8.
    Chung JY, Chastek TQ, Fasolka MJ, Ro HW, Stafford CM (2009) Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. ACS Nano 3:844–852CrossRefGoogle Scholar
  9. 9.
    Kwon SJ, Yoo PJ, Lee HH (2004) Wave interactions in buckling: self-organization of a metal surface on a structured polymer layer. Appl Phys Lett 84:4487–4489CrossRefGoogle Scholar
  10. 10.
    Bowden N, Huck WTS, Paul K, Whitesides GW (1999) The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett 75:2557–2559CrossRefGoogle Scholar
  11. 11.
    Ohzono T, Shimomura M (2004) Ordering of microwrinkle patterns by compressive strain. Phys Rev B 69:132202–132206CrossRefGoogle Scholar
  12. 12.
    Ohzono T, Matsushita SI, Shimomura M (2005) Coupling of wrinkle patterns to microsphere-array lithographic patterns. Soft Matter 1:227–230CrossRefGoogle Scholar
  13. 13.
    Muller-Wiegand M, Georgiev G, Oesterschulze E, Fuhrmann T, Salbeck J (2002) Spinodal patterning in organic–inorganic hybrid layer systems. Appl Phys Lett 81:4940–4942CrossRefGoogle Scholar
  14. 14.
    Huck WTS, Bowden N, Onck P, Pardoen T, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16:3497–3501CrossRefGoogle Scholar
  15. 15.
    Yoo PJ, Suh KY, Park SY, Lee HH (2002) Physical self-assembly of microstructures by anisotropic buckling. Adv Matter 14:1383–1387CrossRefGoogle Scholar
  16. 16.
    Jiang C, Singamaneni S, Merrick E, Tsukruk VV (2006) Complex buckling instability patterns of nanomembranes with encapsulated gold nanoparticle arrays. Nano Lett 6:2254–2259CrossRefGoogle Scholar
  17. 17.
    Lin P-C, Yang S (2007) Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl Phys Lett 90:241903–241905CrossRefGoogle Scholar
  18. 18.
    Vandeparre H, Léopoldès J, Poulard C, Desprez S, Derue G, Gay C, Damman P (2007) Slippery or sticky boundary conditions: control of wrinkling in metal-capped thin polymer films by selective adhesion to substrates. Phys Rev Lett 99:188302–188305CrossRefGoogle Scholar
  19. 19.
    Vandeparre H, Damman P (2008) Wrinkling of stimuloresponsive surfaces: mechanical instability coupled to diffusion. Phys Rev Lett 101:124301–124304CrossRefGoogle Scholar
  20. 20.
    Chung JY, Nolte AJ, Stafford CM (2009) Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv Mater 21:1358–1362CrossRefGoogle Scholar
  21. 21.
    Ahmed SF, Rho GH, Lee KR, Vaziri A, Moon M-W (2010) High aspect ratio wrinkles on a soft polymer. Soft Matt 6:5709–5714CrossRefGoogle Scholar
  22. 22.
    Garnier GM, Croll AB, Davis CS, Alfred J (2010) Crosby, contact-line mechanics for pattern control. Soft Matt 6:5789–5794CrossRefGoogle Scholar
  23. 23.
    Moon M-W, Lee SH, Sun J-Y, Oh KH, Vaziri A, Hutchinson JW (2007) Wrinkled hard skins on polymers created by focused ion beam. Proc Natl Acad Sci 104:1130–1133CrossRefGoogle Scholar
  24. 24.
    Moon M-W, Lee SH, Sun J-Y, Oh KH, Vaziria A, Hutchinson JW (2007) Controlled formation of nanoscale wrinkling patterns on polymers using focused ion beam. Scripta Mater 57:747–750CrossRefGoogle Scholar
  25. 25.
    Chung S, Lee JH, Moon M-W, Han J, Kamm RD (2008) Non-lithographic wrinkle nanochannels for protein preconcentration. Adv Mater 20:3011–3016CrossRefGoogle Scholar
  26. 26.
    Chan EP, Smith EJ, Hayward RC, Crosby AJ (2008) Surface wrinkles for smart adhesion. Adv Mater 20:711–716CrossRefGoogle Scholar
  27. 27.
    Kim JB, Kim P, Pegard NC, Oh SJ, Kagan C, Fleischer JW, Stone HA, Loo Y-L (2012) Wrinkles and deep folds as photonic structures in photovoltaics. Nat Photonics 6:327–332CrossRefGoogle Scholar
  28. 28.
    Hyun DC, Moon GD, Cho EC, Jeong U (2009) Repeated transfer of colloidal patterns by using reversible buckling process. Adv Funct Mater 19:2155–2162CrossRefGoogle Scholar
  29. 29.
    Lu H, Mohwalda H, Fery A (2007) A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3:1530–1536CrossRefGoogle Scholar
  30. 30.
    Schweikart A, Fortini A, Wittemann A, Schmidt M, Fery A (2010) Nanoparticle assembly by confinement in wrinkles: experiment and simulations. Soft Matter 6:5860–5863CrossRefGoogle Scholar
  31. 31.
    Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRefGoogle Scholar
  32. 32.
    Cerda E, Chandar KR, Mahadevan L (2002) Thin films: wrinkling of an elastic sheet under tension. Nature 419:579–580CrossRefGoogle Scholar
  33. 33.
    Guo CF, Nayyar V, Zhang Z, Chen Y, Miao J, Huang R, Liu Q (2012) Path-guided wrinkling of nanoscale metal films. Adv Mater 24:3010–3014CrossRefGoogle Scholar
  34. 34.
    Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, New YorkGoogle Scholar
  35. 35.
    Yoo PJ, Lee HH (2005) Morphological diagram for metal/polymer bilayer wrinkling: influence of thermomechanical properties of polymer layer. Macromolecules 38:2820–2831CrossRefGoogle Scholar
  36. 36.
    Okayasu T, Zhang HL, Bucknall DG, Briggs GAD (2004) Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv Funct Mater 14:1080–1088CrossRefGoogle Scholar
  37. 37.
    Tu TX, Stronge WJ (1985) Wrinkling of a circular elastic plate stamped by a spherical punch. Int J Solids Struct 21:995–1003CrossRefGoogle Scholar
  38. 38.
    Bullough M, Cui Y (2012) A library of large-scale surface patterns induced by flame on elastomers. Soft Matt 8:3304–3307CrossRefGoogle Scholar
  39. 39.
    McDonald PJ, Godward J, Sackin R, Sear RP (2001) Macromolecules 34:1048CrossRefGoogle Scholar
  40. 40.
    Guan L, Peng K, Yang Y, Qiu X, Wang C (2009) The nanofabrication of polydimethylsiloxane using a focused ion beam. Nanotechnology 20:145301–145305CrossRefGoogle Scholar
  41. 41.
    Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698CrossRefGoogle Scholar
  42. 42.
    Emery RD, Povirk GL (2003) Surface flux limited diffusion of solvent into polymer. Tensile behavior of free-standing gold film. Part I. Coarse-grained films. Acta Mater 51:2067–2078CrossRefGoogle Scholar
  43. 43.
    Huang R (2005) Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53:63–89CrossRefGoogle Scholar
  44. 44.
    Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101–2118CrossRefGoogle Scholar
  45. 45.
    Mei H, Landis CM, Huang R (2011) Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech Mater 43:627–642CrossRefGoogle Scholar
  46. 46.
    Kim JB, Kim P, Pegard NC, Oh SJ, Kagan CR, Fleischer JW, Stone HA, Loo Y-L (2012) Wrinkles and deep folds as photonic structures in photovoltaics. Nat Photonics 6:325–332Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian Liu
    • 1
  • Xuanming Duan
    • 2
  • Changsi Peng
    • 3
  1. 1.National Center for Nanoscience and TechnologyBeijingChina, People’s Republic
  2. 2.Technical Institute of Physics and Chemistry Chinese Academy of SciencesBeijingChina, People’s Republic
  3. 3.Institute of Information Optical EngineeringSoochow UniversitySuzhouChina, People’s Republic

Personalised recommendations