Skip to main content

\(\text {AB}_{2}\mathrm{{S}}_{4}\) and \(\text {AB}_{2}\mathrm{{Se}}_{4 }\) Compounds at High Pressures

  • Chapter
  • First Online:
Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 189))

Abstract

Thiospinels and selenospinels are compounds with general formula \(\mathrm{A}^\mathrm{{II}}\mathrm{B}_{2}^\mathrm{{III}}\mathrm{X}_{4}^\mathrm{{VI}}\), where A and B are cations and X is sulfur and selenium, respectively. Within the huge compositional range of these families, there exist materials with different interesting physical properties, such as nonlinear optics, high concentration defects in semiconductors or metal-insulator transitions. In this chapter, we gather together previously reported studies addressing the effect of high pressure on the crystal and electronic structures of these compounds. Special emphasis has been placed on the crystal chemistry of indium thiospinels under pressure and the evolution of their structural, electronic, and optical properties. The observed pressure-induced phase transition to a post-spinel structure in \(\mathrm{A}\mathrm{{In}}_{2}\mathrm{{S}}_{4}\) compounds is discussed in detail. These results could be particularly relevant for Geophysics since thiospinels can be considered as structural analogs of MgAl\(_{2}\mathrm{{O}}_{4}\), a common constituent of the Earth’s upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgobiani AN, Radautsan SI, Tiginyanu IM (1985) Wide-gap A(II)B(III)\(_{2}\)C(VI)\(_{4}\) semiconductors—optical and photoelectric properties, and potential applications. Soviet Phys Semicond Ussr 19:121–132

    Google Scholar 

  2. Ball JA, Pirzada M, Grimes RW, Zacate MO, Price DW, Uberuaga BP (2005) Predicting lattice parameter as a function of cation disorder in MgAl\(_{2}{\rm {O}}_{4}\) spinel. J Phys Condens Matter 17: 7621–7631

    Google Scholar 

  3. Radaelli PG, Horibe Y, Gutmann MJ, Ishibashi H, Chen CH, Ibberson RM, Koyama Y, Hor YS, Kiryukhin V, Cheong SW (2002) Formation of isomorphic \({\rm Ir}3^{+}\) and \({\rm Ir}4^{+}\) octamers and spin dimerization in the spinel CuIr\(_{2}{\rm {S}}_{4}\). Nature 416:155–158

    Article  Google Scholar 

  4. Tang J, Matsumoto T, Furubayashi T, Kosaka T, Nagata S, Kato Y (1998) Metal–insulator transition of CuIr\(_{2}\)(S, Se)\(_{4}\) under high pressure. J Magn Magn Mater 177:1363–1364

    Article  Google Scholar 

  5. Palacios P, Aguilera I, Sanchez K, Conesa JC, Wahnon P (2008) Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. Phys Rev Lett 101:046403

    Article  Google Scholar 

  6. Okonska-Kozlowska I, Malicka E, Waskowska A, Heimann J, Mydlarz T (2001) Distribution of metal ions and magnetic properties in spinel system CdCr\(_{2-x}{\rm{Ga}}_{x}{\rm{Se}}_{4}\). J Solid State Chem 158:34–39

    Article  Google Scholar 

  7. Radautsan SI, Tiginyanu IM (1993) Defect engineering in II-III\(_{2}\)-VI\(_{4}\) and related compounds. Jpn J Appl Phys 32 Part 1:5–9

    Google Scholar 

  8. Ito M, Hori J, Kurisaki H, Okada H, Kuroki AJP, Ogita N, Udagawa M, Fujii H, Nakamura F, Fujita T, Suzuki T (2003) Pressure-induced superconductor-insulator transition in the spinel compound CuRh\(_{2}{\rm{S}}_{4}\). Phys Rev Lett 91(4):077001

    Article  Google Scholar 

  9. Irifune T, Fujino K, Ohtani E (1991) A new high-pressure form of MgAl\(_{2}{\rm {O}}_{4}\). Nature 349: 409–411

    Google Scholar 

  10. Menyuk N, Dwight K, Arnott RJ, Wold A (1966) Ferromagnetism in CdCr\(_{2}{\rm{Se}}_{4}\) and CdCr\(_{2}{\rm{S}}_{4}\). J Appl Phys 37:1387–1388

    Article  Google Scholar 

  11. Gibart P, Dormann JL, Pellerin Y (1969) Magnetic properties of FeCr\(_{2}{\rm{S}}_{4}\) and CoCr\(_{2}{\rm{S}}_{4}\). Phys Stat Solidi 36:187–194

    Article  Google Scholar 

  12. Menyuk N, Dwight K, Wold A (1965) Magnetic properties of MnCr\(_{2}{\rm {S}}_{4}\). J Appl Phys 36: 1088–1090

    Google Scholar 

  13. Ramirez AP, Cava RJ, Krajewski J (1997) Colossal magnetoresistance in Cr-based chalcogenide spinels. Nature 386:156–159

    Article  Google Scholar 

  14. Hagino T, Seki Y, Wada N, Tsuji S, Shirane T, Kumagai KI, Nagata S (1995) Superconductivity in spinel-type compounds CuRh\(_{2}{\rm{S}}_{4}\) and CuRh\(_{2}{\rm{Se}}_{4}\). Phys Rev B 51:12673–12684

    Article  Google Scholar 

  15. Vanmaaren NH, Schaeffe GM, Lotgering FK (1967) Superconductivity in sulpho- and selenospinels. Phys Lett A 25:238–239

    Article  Google Scholar 

  16. Albers W, Rooymans CJM (1965) High-pressure polymorphism of spinel compounds. Solid State Commun 3:417–419

    Article  Google Scholar 

  17. Bouchard RJ (1967) Spinel to defect NiAs structure transformation. Mater Res Bull 2:459–464

    Article  Google Scholar 

  18. Bouchard RJ, Russo PA, Wold A (1965) Preparation and electrical properties of some thiospinels. Inorg Chem 4:685–688

    Article  Google Scholar 

  19. Wittlinger J, Werner S, Schulz H (1997) On the amorphisation of ZnCr\(_{2}{\rm{S}}_{4}\) spinel under high pressure: X-ray diffraction studies. Phys Chem Mineral 24:597–600

    Article  Google Scholar 

  20. Vaqueiro P, Powell AV, Hull S, Keen DA (2001) Pressure-induced phase transitions in chromium thiospinels. Phys Rev B 63(6):064106

    Article  Google Scholar 

  21. Nakamoto Y, Matsuoka T, Kagayama T, Shimizu K, Tang J, Kobayashi N, Nagata S, Kikegawa T (2005) The phase transition of CuCrZrS\(_{4}\) at high pressure. Phys B Condens Matter 359: 1213–1215

    Google Scholar 

  22. Garga AB, Vijayakumar V, Godwal BK, Choudhury A, Hochheimer HD (2007) Reentrant high-conduction state in CuIr\(_{2}{\rm{S}}_{4}\) under pressure. Solid State Commun 142:369–372

    Article  Google Scholar 

  23. Errandonea D, Manjon FJ (2008) Pressure effects on the structural and electronic properties of ABX\(_{4}\) scintillating crystals. Prog Mater Sci 53:711–773

    Article  Google Scholar 

  24. Errandonea D, Kumar RS, Manjon FJ, Ursaki VV, Rusu EV (2009) Post-spinel transformations and equation of state in ZnGa\(_{2}{\rm{O}}_{4}\): Determination at high pressure by in situ X-ray diffraction. Phys Rev B 79(6):024103

    Article  Google Scholar 

  25. Levy D, Pavese A, Hanfland M (2000) Phase transition of synthetic zinc ferrite spinel (ZnFe\(_{2}{\rm{O}}_{4})\) at high pressure, from synchrotron X-ray powder diffraction. Phys Chem Mineral 27:638–644

    Article  Google Scholar 

  26. Ono S, Kikegawa T, Ohishi Y (2006) The stability and compressibility of MgAl\(_{2}{\rm{O}}_{4}\) high-pressure polymorphs. Phys Chem Mineral 33:200–206

    Article  Google Scholar 

  27. Yamaura K, Huang Q, Zhang L, Takada K, Baba Y, Nagai T, Matsui Y, Kosuda K, Takayama-Muromachi E (2007) Magnetic properties of the calcium ferrite-type Li\(_{0.92}{\rm{Mn}}_{2}{\rm{O}}_{4}\). J Magn Magn Mater 310:1578–1580

    Article  Google Scholar 

  28. Ursaki VV, Burlakov II, Tiginyanu IM, Raptis YS, Anastassakis E, Aksenov I, Sato K (1998) Pressure induced phase transitions in spinel and wurtzite phases of ZnAl\(_{2}{\rm{S}}_{4}\) compound. Jpn J Appl Phys 37:135–140

    Article  Google Scholar 

  29. Manjon FJ, Segura A, Amboage M, Pellicer-Porres J, Sanchez-Royo JF, Itie JP, Flank AM, Lagarde P, Polian A, Ursaki VV, Tiginyanu IM (2007) Structural and optical high-pressure study of spinel-type MnIn\(_{2}{\rm{S}}_{4}\). Phys Stat Solidi B 244:229–233

    Article  Google Scholar 

  30. Ruiz-Fuertes J, Errandonea D, Manjon FJ, Martinez-Garcia D, Segura A, Ursaki VV, Tiginyanu IM (2008) High-pressure effects on the optical-absorption edge of CdIn\(_{2}{\rm{S}}_{4}\), MgIn\(_{2}{\rm{S}}_{4}\), and MnIn\(_{2}\)S\(_{4}\) thiospinels. J Appl Phys 103(5):063710

    Article  Google Scholar 

  31. Ursaki VV, Manjon FJ, Tiginyanu IM, Tezlevan VE (2002) Raman scattering study of pressure-induced phase transitions in MIn\(_{2}{\rm{S}}_{4}\) spinels. J Phys Condens Matter 14:6801–6813

    Article  Google Scholar 

  32. Santamaria-Perez D, Amboage M, Manjon FJ, Errandonea D, Rodriguez-Hernandez P, Muñoz A, Mujica A, Radescu S, Ursaki VV, Tiginyanu IM (2012) Crystal chemistry of CdIn\(_{2}{\rm{S}}_{4}\), MgIn\(_{2}{\rm{S}}_{4}\) and MnIn\(_{2}{\rm{S}}_{4}\) thiospinels under high pressure. J Phys Chem C 116:14078–14087

    Article  Google Scholar 

  33. Banus MD, Lavine MC (1969) Polymorphism in selenospinels—a high pressure phase of CdCr\(_{2}{\rm {Se}}_{4}\). J Solid State Chem 1:109–116

    Article  Google Scholar 

  34. Waskowska A, Gerward L, Olsen JS, Malicka E (2002) Temperature- and pressure-induced lattice distortion in CdCr\(_{2-x}{\rm {Ga}}_{x}{\rm {Se}}_{4}\) (x = 0, 0.06, and 0.12). J Phys Condens Matter 14: 12423–12431

    Google Scholar 

  35. Grzechnik A, McMillan PF, Ouvrard G (1997) Olivine-spinel phase transformations in Mn\(_{2}\)SiSe\(_{4}\) at high pressure. Nucl Instrum Methods Phys Res B 133:24–27

    Article  Google Scholar 

  36. Finger LW, Hazen RM, Hofmeister AM (1986) High-pressure crystal chemistry of spinel MgAl\(_{2}{\rm {O}}_{4}\) and magnetite Fe\(_{3}{\rm {O}}_{4}\)—comparisons with silicate spinels. Phys Chem Mineral 13:215–220

    Article  Google Scholar 

  37. Asbrink S, Waskowska A, Gerward L, Olsen JS, Talik E (1999) High-pressure phase transition and properties of spinel ZnMn\(_{2}{\rm{O}}_{4}\). Phys Rev B 60:12651–12656

    Article  Google Scholar 

  38. Asbrink S, Waskowska A, Olsen JS, Gerward L (1998) High-pressure phase of the cubic spinel NiMn\(_{2}{\rm{O}}_{4}\). Phys Rev B 57:4972–4974

    Article  Google Scholar 

  39. Waskowska A, Gerward L, Olsen JS, Steenstrup S, Talik E (2001) CuMn\(_{2}{\rm{O}}_{4}\): properties and the high-pressure induced Jahn-Teller phase transition. J Phys Condens Matter 13:2549–2562

    Article  Google Scholar 

  40. Pendas AM, Costales A, Blanco MA, Recio JM, Luaña V (2000) Local compressibilities in crystals. Phys Rev B 62:13970–13978

    Article  Google Scholar 

  41. Recio JM, Franco R, Pendas AM, Blanco MA, Pueyo L (2001) Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Phys Rev B 63(7):184101

    Article  Google Scholar 

  42. Gerward L, Jiang JZ, Olsen JS, Recio JM, Waskowska A (2005) X-ray diffraction at high pressure and high or low temperature using synchrotron radiation—selected applications in studies of spinel structures. J Alloys Compd 401:11–17

    Article  Google Scholar 

  43. Waskowska A, Gerward L, Olsen JS, Feliz M, Llusar R, Gracia L, Marques M, Recio JM (2004) High-pressure behaviour of selenium-based spinels and related structures—an experimental and theoretical study. J Phys Condens Matter 16:53–63

    Article  Google Scholar 

  44. Waskowska A, Gerward L, Olsen JS, Marques M, Contreras-Garcia J, Recio JM (2009) The bulk modulus of cubic spinel selenides: an experimental and theoretical study. High Press Res 29:72–75

    Article  Google Scholar 

  45. Hahn H, Klingler W (1950) Uber die Kristallstruktur einiger ternarer Sulfide, die sich von Indium(III)-Sulfid ableiten. Z Anorg Chem 263:177–190

    Article  Google Scholar 

  46. Nitsche R (1971) Crystal growth and phase investigations in multi-component systems by vapour transport. J Cryst Growth 9:238–243

    Article  Google Scholar 

  47. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  48. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244–247

    Article  Google Scholar 

  49. Wittlinger J, Werner S, Schulz H (1998) Pressure-induced order-disorder phase transition of spinel single crystals. Acta Cryst B 54:714–721

    Article  Google Scholar 

  50. Seminovski Y, Palacios P, Wahnon P, Grau-Crespo R (2012) Band gap control via tuning of inversion degree in CdIn\(_{2}{\rm{S}}_{4}\) spinel. Appl Phys Lett 100(3):102112

    Article  Google Scholar 

  51. Ishimaru M, Afanasyev-Charkin IV, Sickafus KE (2000) Ion-beam-induced spinel-to-rocksalt structural phase transformation in MgAl\(_{2}{\rm{O}}_{4}\). Appl Phys Lett 76:2556–2558

    Article  Google Scholar 

  52. Madelung O (1992) Semiconductors: other than group IV elements and III-V compounds. Springer-Verlag, Berlin

    Book  Google Scholar 

  53. Errandonea D, Kumar RS, Manjon FJ, Ursaki VV, Tiginyanu IM (2008) High-pressure X-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa\(_{2}{\rm{Se}}_{4}\) and defect-chalcopyrite CdGa\(_{2}{\rm{S}}_{4}\). J Appl Phys 104(9):063524

    Article  Google Scholar 

  54. Chen L, Matsunami M, Nanba T, Matsumoto T, Nagata S, Ikemoto Y, Moriwaki T, Hirono T, Kimura H (2005) Far-infrared spectroscopy of electronic states of CuIr\(_{2}{\rm{Se}}_{4}\) at high pressure. J Phys Soc Jpn 74:1099–1102

    Article  Google Scholar 

  55. Lutz HD, Becker W, Muller B, Jung M (1989) Raman single-crystal studies of spinel-type MCr\(_{2}{\rm {S}}_{4}\) (M = Mn, Fe, Co., Zn, Cd), MIn\(_{2}{\rm {S}}_{4}\) (M = Mn, Fe, Co., Ni), MnCr\(_{2-2x}{\rm {In}}_{2x}{\rm {S}}_{4}\) and Co\(_{1-x}{\rm {Cd}}_{x}{\rm {Cr}}_{2}{\rm {S}}_{4}\). J Raman Spectrosc 20:99–103

    Google Scholar 

  56. Fu ZW, Dow JD (1987) Clustering modes in the vibrational spectra of Hg\(_{1-x}{\rm{Cd}}_{x}\)Te alloys. Phys Rev B 36:7625–7626

    Article  Google Scholar 

  57. Lutz HD, Waschenbach G, Kliche G, Haeuseler H (1983) Lattice vibration spectra. XXXIII. Far-red reflection spectra, TO and LO phonon frequencies, optical and dielectric constants, and effective charges of the spinel-type compounds MCr\(_{2}{\rm {S}}_{4}\) (M = Mn, Fe, Co., Zn, Cd, Hg), MCr\(_{2}{\rm {Se}}_{4}\) (M = Zn, Cd, Hg) and MIn\(_{2}{\rm {S}}_{4}\) (M = Mn, Fe, Co., Ni, Cd, Hg). J Solid State Chem 48:196–208

    Article  Google Scholar 

  58. Syrbu NN, Kretsu R, Gezlevan VE (1997) IR vibration modes of MgIn\(_{2}{\rm{S}}_{4}\) and CdIn\(_{2}{\rm{S}}_{4}\) crystals. Opt Spectrosc 82:247–252

    Google Scholar 

  59. Wakaki M, Shintani O, Ogawa T, Arai T (1982) Crystal structure and lattice absorption of partially inverse spinel compound MgIn\(_{2}{\rm{S}}_{4}\). Jpn J Appl Phys 21:958–959

    Article  Google Scholar 

  60. Gubanov VA, Kulikova OV, Kulyuk LL, Radautsan SI, Ratseev SA, Salivon GI, Tezlevan VE, Tsytsanu VI (1988) Raman scattering in CdIn\(_{2}\)S\(_{4}\) and phonon modes in some A\(^{\rm II}{\rm {B}}_{2}\) \(^{\rm III}{\rm {C}}_{4}\) \(^{\rm VI}\) spinel semiconductors. Sov Phys Solid State 30:457–461

    Google Scholar 

  61. Gracia L, Beltran A, Andres J, Franco R, Recio JM (2002) Quantum-mechanical simulation of MgAl\(_{2}{\rm{O}}_{4}\) under high pressure. Phys Rev B 66(7):224114

    Article  Google Scholar 

  62. Nakanishi H, Irie T (1984) Pressure effect on the absorption edges of CdIn\(_{2}{\rm{S}}_{4}\) and related compounds. Phys Stat Solidi B 126:145–148

    Article  Google Scholar 

  63. Segura A, Sans JA, Errandonea D, Martinez-Garcia D, Fages V (2006) High conductivity of Ga-doped rock-salt ZnO under pressure: Hint on deep-ultraviolet-transparent conducting oxides. Appl Phys Lett 88(3):011910

    Article  Google Scholar 

  64. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324–1324

    Article  Google Scholar 

  65. Meloni F, Mula G (1970) Pseudo-potential calculation of band structure of CdIn\(_{2}{\rm{S}}_{4}\). Phys Rev B 2:392–396

    Article  Google Scholar 

  66. Betancourt L, Sagredo V, Rincon C, Delgado GE (2006) Optical absorption and dependence of the band gap energy on the temperature of monocrystals in the Cd\(_{1-x}{\rm{Mn}}_{x}{\rm{In}}_{2}{\rm{S}}_{4}\) system. Rev Mex Fis 52:164–166

    Google Scholar 

  67. Marinelli M, Baroni S, Meloni F (1988) Structural and electronic properties of spinel semiconductors–Ab initio pseudopotential study of MgIn\(_{2}{\rm{S}}_{4}\). Phys Rev B 38:8258–8263

    Article  Google Scholar 

  68. Niftiev NN (1994) Optical absorption in MnIn\(_{2}{\rm {S}}_{4}\) single-crystals. Solid State Commun 92: 781–783

    Google Scholar 

  69. Kawazoe H, Ueda K (1999) Transparent conducting oxides based on the spinel structure. J Am Ceram Soc 82:3330–3336

    Article  Google Scholar 

  70. Manjon FJ, Gomis O, Rodriguez-Hernandez P, Perez-Gonzalez E, Munoz A, Errandonea D, Ruiz-Fuertes J, Segura A, Fuentes-Cabrera M, Tiginyanu IM, Ursaki VV (2010) Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Phys Rev B 81(7):195201

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN and MINECO under Projects No. CTQ2009-14596-C02-01 and CTQ2012-38599-C02-02, as well as from Comunidad de Madrid and European Social Fund: S2009/PPQ-1551 4161893 (QUIMAPRES). J R-F is indebted to the Spanish MCYT for granting an FPI fellowship (BES-2008-002043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Santamaria-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santamaria-Perez, D., Ruiz-Fuertes, J. (2014). \(\text {AB}_{2}\mathrm{{S}}_{4}\) and \(\text {AB}_{2}\mathrm{{Se}}_{4 }\) Compounds at High Pressures. In: Manjon, F., Tiginyanu, I., Ursaki, V. (eds) Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds. Springer Series in Materials Science, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40367-5_3

Download citation

Publish with us

Policies and ethics