Skip to main content

Bioimaging Based on Lanthanide-Doped Nanoprobes

  • Chapter
  • First Online:
Lanthanide-Doped Luminescent Nanomaterials

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Nowadays, the applications of inorganic materials as biomedical nanoprobes play an important role in nanomedicine due to their unique electric, magnetic, and optical properties. Bioimaging particularly downshifting (DS), upconversion (UC), and magnetic resonance (MR) imaging based on lanthanide-doped nanoprobes offers a unique approach for visualizing morphological details in tissue and thus has become a powerful noninvasive tool for visualizing the full range of bio-species from living cells to animals. In this chapter, we will provide a brief overview of the use of lanthanide-doped luminescent/magnetic nanoparticles (NPs) as efficient contrast agents for in vitro and in vivo DS/UC optical imaging as well as MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ju Q, Liu YS, Tu DT et al (2011) Lanthanide-doped multicolor GdF3 nanocrystals for time-resolved photoluminescent biodetection. Chem Eur J 17(31):8549–8554

    Article  CAS  Google Scholar 

  2. Ye ZQ, Tan MQ, Wang GL et al (2004) Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Anal Chem 76(3):513–518

    Article  CAS  Google Scholar 

  3. Hanaoka K, Kikuchi K, Kobayashi S et al (2007) Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. J Am Chem Soc 129(44):13502–13509

    Article  CAS  Google Scholar 

  4. Tu DT, Liu LQ, Ju Q et al (2011) Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew Chem Int Ed 50(28):6306–6310

    Article  CAS  Google Scholar 

  5. Liu Y, Zhou S, Tu D et al (2012) Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J Am Chem Soc 134(36):15083–15090

    Article  CAS  Google Scholar 

  6. Ju Q, Tu DT, Liu YS et al (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134:1323–1330

    Article  CAS  Google Scholar 

  7. Wang YH, Liu YS, Xiao QB et al (2011) Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties. Nanoscale 3(8):3164–3169

    Article  CAS  Google Scholar 

  8. Liu YS, Tu DT, Zhu HM et al (2010) A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv Mater 22(30):3266–3271

    Article  CAS  Google Scholar 

  9. Liu LQ, Chen XY (2007) Energy levels, fluorescence lifetime and Judd-Ofelt parameters of Eu3+ in Gd2O3 nanocrystals. Nanotechnology 18(25):255704

    Article  Google Scholar 

  10. Beverloo HB, van Schadewijk A, van Gelderen-Boele S et al (1990) Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 11(7):784–792

    Article  CAS  Google Scholar 

  11. Beaurepaire E, Buissette V, Sauviat MP et al (2004) Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level. Nano Lett 4(11):2079–2083

    Article  CAS  Google Scholar 

  12. Casanova D, Giaume D, Moreau M et al (2007) Counting the number of proteins coupled to single nanoparticles. J Am Chem Soc 129(42):12592–12593

    Article  CAS  Google Scholar 

  13. Maldiney T, Sraiki G, Viana B et al (2012) In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt Mater Expr 2(3):261–268

    Article  CAS  Google Scholar 

  14. Smet PF, Van den Eeckhout K, Bos AJJ et al (2012) Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors. J Lumin 132(3):682–689

    Article  CAS  Google Scholar 

  15. Bunzli J-CG, Eliseeva SV (2013) Intriguing aspects of lanthanide luminescence. Chem Sci 4(5):1939–1949

    Article  Google Scholar 

  16. de Chermont QL, Chaneac C, Seguin J et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci USA 104(22):9266–9271

    Article  Google Scholar 

  17. Wu B, Wang H, Chen J et al (2011) Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J Am Chem Soc 133(4):686–688

    Article  CAS  Google Scholar 

  18. Li Z, Zhang H, Sun M et al (2012) A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. J Mater Chem 22(47):24713–24720

    Article  CAS  Google Scholar 

  19. Maldiney T, Lecointre A, Viana B et al (2011) Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J Am Chem Soc 133(30):11810–11815

    Article  CAS  Google Scholar 

  20. Wang M, Mi CC, Wang WX et al (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 3(6):1580–1586

    Article  CAS  Google Scholar 

  21. Zhan QQ, Qian J, Liang HJ et al (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5(5):3744–3757

    Article  CAS  Google Scholar 

  22. He M, Huang P, Zhang CL et al (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477

    Article  CAS  Google Scholar 

  23. Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349

    Article  CAS  Google Scholar 

  24. Hilderbrand SA, Shao FW, Salthouse C et al (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 28:4188–4190

    Article  Google Scholar 

  25. Zijlmans H, Bonnet J, Burton J et al (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 267(1):30–36

    Article  CAS  Google Scholar 

  26. Zhou LJ, Gu ZJ, Liu XX et al (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22(3):966–974

    Article  CAS  Google Scholar 

  27. Wu SW, Han G, Milliron DJ et al (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106(27):10917–10921

    Article  CAS  Google Scholar 

  28. Ostrowski AD, Chan EM, Gargas DJ et al (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6(3):2686–2692

    Article  CAS  Google Scholar 

  29. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717

    Article  CAS  Google Scholar 

  30. Soo Choi H, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  Google Scholar 

  31. Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124

    Article  CAS  Google Scholar 

  32. Teng X, Zhu Y, Wei W et al (2012) Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J Am Chem Soc 134(20):8340–8343

    Article  CAS  Google Scholar 

  33. Wang J, Wang F, Wang C et al (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50(44):10369–10372

    Article  CAS  Google Scholar 

  34. Wang J, Wang F, Xu J et al (2010) Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. C R Chim 13(6–7):731–736

    Article  CAS  Google Scholar 

  35. Zeng JH, Su J, Li ZH et al (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv Mater 17(17):2119–2123

    Article  CAS  Google Scholar 

  36. Ma DK, Yang DP, Jiang JL et al (2010) One-dimensional hexagonal-phase NaYF4: controlled synthesis, self-assembly, and morphology-dependent up-conversion luminescence properties. CrystEngComm 12(5):1650–1658

    Article  CAS  Google Scholar 

  37. Zeng S, Xiao J, Yang Q et al (2012) Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22(19):9870–9874

    Article  CAS  Google Scholar 

  38. Liu CH, Wang H, Zhang XR et al (2009) Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J Mater Chem 19(4):489–496

    Article  CAS  Google Scholar 

  39. Liu R, Tu DT, Liu YS et al (2012) Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals. Nanoscale 4(15):4485–4491

    Article  CAS  Google Scholar 

  40. Ye XC, Collins JE, Kang YJ et al (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci USA 107(52):22430–22435

    Article  CAS  Google Scholar 

  41. Dai Y, Ma P, Cheng Z et al (2012) Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core–shell hybrid microspheres. ACS Nano 6(4):3327–3338

    Article  CAS  Google Scholar 

  42. Jin JF, Gu YJ, Man CWY et al (2011) Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847

    Article  CAS  Google Scholar 

  43. Yang D, Kang X, Ma P et al (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34(5):1601–1612

    Article  CAS  Google Scholar 

  44. Vetrone F, Naccache R, de la Fuente AJ et al (2010) Intracellular imaging of HeLa cells by non-functionalized NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(4):495–498

    Article  CAS  Google Scholar 

  45. Park Y, Kim HM, Kim JH et al (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24(42):5755–5761

    Article  CAS  Google Scholar 

  46. Xia A, Gao Y, Zhou J et al (2011) Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32(29):7200–7208

    Article  CAS  Google Scholar 

  47. Yuan PY, Lee YH, Gnanasammandhan MK et al (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale 4(16):5132–5137

    Article  CAS  Google Scholar 

  48. Zhou J, Sun Y, Du XX et al (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295

    Article  CAS  Google Scholar 

  49. Liu Q, Sun Y, Yang TS et al (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133(43):17122–17125

    Article  CAS  Google Scholar 

  50. Xia A, Chen M, Gao Y et al (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33(21):5394–5405

    Article  CAS  Google Scholar 

  51. Xing HY, Bu WB, Ren QG et al (2012) A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33(21):5384–5393

    Article  CAS  Google Scholar 

  52. Tian G, Gu ZJ, Zhou LJ et al (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231

    Article  CAS  Google Scholar 

  53. Hu FQ, Zhao YS (2012) Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale 4(20):6235–6243

    Article  CAS  Google Scholar 

  54. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  55. Zhou ZJ, Huang DT, Bao JF et al (2012) A synergistically enhanced T1-T2 dual-modal contrast agent. Adv Mater 24(46):6223–6228

    Article  CAS  Google Scholar 

  56. Choi J-S, Lee J-H, Shin T-H et al (2010) Self-confirming “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc 132(32):11015–11017

    Article  CAS  Google Scholar 

  57. Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352

    Article  CAS  Google Scholar 

  58. Lin WI, Lin CY, Lin YS et al (2013) High payload Gd(III) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging. J Mater Chem B 1(5):639–645

    Article  CAS  Google Scholar 

  59. Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ et al (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR Biomed 26(7):766–780

    Article  CAS  Google Scholar 

  60. Johnson NJJ, Oakden W, Stanisz GJ et al (2011) Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1-MRI contrast enhancement. Chem Mater 23(16):3714–3722

    Article  CAS  Google Scholar 

  61. Park JY, Baek MJ, Choi ES et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669

    Article  CAS  Google Scholar 

  62. Huang S, Cheng Z, Ma P et al (2013) Luminescent GdVO4:Eu3+ functionalized mesoporous silica nanoparticles for magnetic resonance imaging and drug delivery. Dalton Trans 42(18):6523–6530

    Article  CAS  Google Scholar 

  63. Zhang Y, Lin JD, Vijayaragavan V et al (2012) Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T 1 magnetic resonance imaging. Chem Commun 48(83):10322–10324

    Article  CAS  Google Scholar 

  64. Baek MJ, Park JY, Xu W et al (2010) Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. ACS Appl Mater Interface 2(10):2949–2955

    Article  CAS  Google Scholar 

  65. An K, Park M, Yu JH et al (2012) Synthesis of uniformly sized manganese oxide nanocrystals with various sizes and shapes and characterization of their T1 magnetic resonance relaxivity. Eur J Inorg Chem 2012(12):2148–2155

    Article  CAS  Google Scholar 

  66. Li Z, Yi PW, Sun Q et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22(11):2387–2393

    Article  CAS  Google Scholar 

  67. Das GK, Johnson NJJ, Cramen J et al (2012) NaDyF4 Nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J Phys Chem Lett 3(4):524–529

    Article  CAS  Google Scholar 

  68. Kattel K, Park JY, Xu W et al (2011) A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl Mater Interface 3(9):3325–3334

    Article  CAS  Google Scholar 

  69. Moriggi L, Cannizzo C, Dumas E et al (2009) Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J Am Chem Soc 131(31):10828–10829

    Article  CAS  Google Scholar 

  70. Bottrill M, Nicholas LK, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35(6):557–571

    Article  CAS  Google Scholar 

  71. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390

    Article  CAS  Google Scholar 

  72. Jung J, Kim MA, Cho JH et al (2012) Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging. Biomaterials 33(24):5865–5874

    Article  CAS  Google Scholar 

  73. Kim BH, Lee N, Kim H et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631

    Article  CAS  Google Scholar 

  74. Bridot J-L, Faure A-C, Laurent S et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084

    Article  CAS  Google Scholar 

  75. Hou Y, Qiao R, Fang F et al (2013) NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 7(1):330–338

    Article  CAS  Google Scholar 

  76. Corot C, Robert P, Idée J-M et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  CAS  Google Scholar 

  77. McLachlan SJ, Morris MR, Lucas MA et al (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson 4(3):301–307

    Article  CAS  Google Scholar 

  78. Seo WS, Lee JH, Sun X et al (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976

    Article  CAS  Google Scholar 

  79. Choi J-S, Jun Y-W, Yeon S-I et al (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128(50):15982–15983

    Article  CAS  Google Scholar 

  80. Yoon TJ, Yu KN, Kim E et al (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2(2):209–215

    Article  CAS  Google Scholar 

  81. Khemtong C, Togao O, Ren J et al (2011) Off-resonance saturation MRI of superparamagnetic nanoprobes: theoretical models and experimental validations. J Magn Reson 209(1):53–60

    Article  CAS  Google Scholar 

  82. Jun Y-W, Lee J-H, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135

    Article  CAS  Google Scholar 

  83. Lee J-H, Huh Y-M, Jun Y-W et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  CAS  Google Scholar 

  84. Bulte JWM, Wu CC, Brechbiel MW et al (1998) Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents – Preparation and relaxometry. Invest Radiol 33(11):841–845

    Article  CAS  Google Scholar 

  85. Vander Elst L, Roch A, Gillis P et al (2002) Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Magn Reson Med 47(6):1121–1130

    Article  Google Scholar 

  86. Das GK, Zhang Y, D’Silva L et al (2011) Single-phase Dy2O3:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem Mater 23(9):2439–2446

    Article  CAS  Google Scholar 

  87. Zhang Y, Vijayaragavan V, Das GK et al (2012) Single-phase NaDyF4:Tb3+ nanocrystals as multifunctional contrast agents in high-field magnetic resonance and optical imaging. Eur J Inorg Chem 12:2044–2048

    Article  Google Scholar 

  88. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35(6):512–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, X., Liu, Y., Tu, D. (2014). Bioimaging Based on Lanthanide-Doped Nanoprobes. In: Lanthanide-Doped Luminescent Nanomaterials. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40364-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40364-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40363-7

  • Online ISBN: 978-3-642-40364-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics