Skip to main content

Disorders of Glycine, Serine, GABA, and Proline Metabolism

  • Chapter
  • First Online:

Abstract

In addition to the role as components of protein synthesis, several amino acids have other functions in the brain such as building blocks of other brain molecules and a role in neurotransmission. Disorders in catabolism of glycine and of proline are known. The disorders of the synthesis of serine and proline cause severe abnormalities. Serine is required for the synthesis of white matter compounds such as specialized lipids, and its deficiency results in severe hypomyelination. Proline is required for the synthesis of connective tissue proteins, and its deficiency results in laxity of skin and joints. Early treatment of synthetic defects such as serine has shown more promise to avoid severe symptoms. Disturbance of the neurotransmitter roles of GABA, glycine, and 4-hydroxybutyric acid results in severe neurological symptoms. The pathophysiology of these disorders is complex, as has been shown in the mouse model of 4-hydroxybutyric aciduria. In most disorders, diagnostic studies rely on careful measurement of metabolites using age-appropriate reference ranges, followed by molecular analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akaboshi S, Hogema BM, Novelletto A et al (2003) Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 22:442–450

    Article  CAS  PubMed  Google Scholar 

  • Baker P, Scharer G, Creadon-Swindell G et al (2012) Defect in lipoate synthesis cause variant non-ketotic hyperglycinemia. Mol Genet Metab 105:289

    Google Scholar 

  • Baker et al (2013) Variant non-ketotic hyperglycinaemia is caused by mutations in LIAS, BOLA3, and the novel gene GLRX5. Brain 10.1093/brain/awt328; with permission from Oxford University Press

    Google Scholar 

  • Baumgartner MR, Rabier D, Nassogne M-C et al (2005) Δ1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36

    Google Scholar 

  • Bender H-U, Almashanu S, Steel G et al (2005) Functional consequences of PRODH missense mutations. Am J Hum Genet 76:409–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bicknell LS, Pitt J, Aftimos S et al (2008) A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186

    Article  CAS  PubMed  Google Scholar 

  • Boneh A, Allan S, Mendelson D et al (2008) Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinemia. Mol Genet Metab 94:143–147

    Google Scholar 

  • Bröer S, Balley CG, Kowalczuk S et al (2008) Iminoglycinuria and hyperglycinuria are discreet human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 118:3881–3892

    Google Scholar 

  • Cameron JM, Janer A, Levandovskiy V et al (2011) Mutation in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89:486–495

    Google Scholar 

  • Coşkun T, Ozalp I, Tokatli A (1993) Iminoglycinuria: a benign type of inherited aminoaciduria. Turk J Pediatr 35:121–125

    PubMed  Google Scholar 

  • De Koning T, Duran M, Van Maldergem L et al (2002) Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids. J Inherit Metab Dis 25:119–125

    Article  PubMed  Google Scholar 

  • de Koning TJ, Snell K, Duran M et al (2003) l-Serine in disease and development. Biochem J 137:653–661

    Google Scholar 

  • Di Rosa G, Pustorino G, Spano M et al (2008) Type I hyperprolinemia and proline dehydrogenase (PRODH) mutations in four Italian children with epilepsy and mental retardation. Psychiatr Genet 18:40–42

    Article  PubMed  Google Scholar 

  • Dinopoulos A, Matsubara Y, Kure S (2005) Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 86:61–69

    Article  CAS  PubMed  Google Scholar 

  • Falik-Zaccai T, Khayat M, Luder A et al (2010) A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and phenotypic intrafamilial variability. Am J Med Genet B Neuropsychiatr Genet 153:46–56

    Google Scholar 

  • Gibson KM, Christensen E, Jakobs C et al (1997) The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients. Pediatrics 99:567–574

    Article  CAS  PubMed  Google Scholar 

  • Guernsey DL, Jiang H, Evans SC et al (2009) Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85:120–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guilmate A, Legallic S, Steel G et al (2010) Type I hyperprolinemia: genotype/phenotype correlations. Hum Mutat 31:961–965

    Article  Google Scholar 

  • Hart CE, Race V, Achouri Y et al (2007) Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet 80:931–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hennermann JB, Berger JM, Grieben U et al (2012) Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 35:253–261

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Lin W-W, Obie C et al (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthase. J Biol Chem 274:6754–6762

    Google Scholar 

  • Jaeken J, Casaer P, De Cock P et al (1984) Gamma-aminobutyric acid transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics 15:165–169

    Article  CAS  PubMed  Google Scholar 

  • Jaeken J, Detheux M, Fryns JP et al (1997) Phosphoserine phosphatase deficiency in a patient with Williams syndrome. J Med Genet 34:594–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly JJ, Freeman AF, Wang H, Cowen EW, Kong HH (2010) An Amish boy with recurrent ulcerations of the lower extremities, teleangiectases of the hands, and chronic lung disease. J Am Acad Dermatol 62:1031–1034

    Article  PubMed Central  PubMed  Google Scholar 

  • Klar A, Navon-Elkan P, Rubinow A et al (2010) Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur J Pediatr 169:727–732

    Article  PubMed  Google Scholar 

  • Korman SH, Gutman A (2002) Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 44:712–720

    Article  PubMed  Google Scholar 

  • Kouwenberg D, Gardeitchik T, Wevers RA et al (2011) Recognizable phenotype with common occurrence of microcephaly, psychomotor retardation, but no spontaneous bone fractures in autosomal recessive cutis laxa type IIB due to PYCR1 mutations. Am J Med Genet A 155:2331–2332

    Article  CAS  Google Scholar 

  • Kure S, Kato K, Dinopoulos A et al (2006) Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat 27:343–352

    Article  CAS  PubMed  Google Scholar 

  • Lin D-S, Yeung C-Y, Liu H-L et al (2011) A novel mutation in PYCR1 causes an autosomal recessive cutis laxa with premature aging features in a family. Am J Med Genet A 155:1285–1289

    Article  CAS  Google Scholar 

  • Lupi A, Rossi A, Campari E et al (2006) Molecular characterisation of six patients with prolidase deficiency: identification of the first small duplication in the prolidase gene and of a mutation generating symptomatic and asymptomatic outcomes in the same family. J Med Genet 43:e58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinelli D, Häberle J, Rubio V et al (2012) Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis 35:761–776

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Zimmermann FA, Fauth C et al (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism and glycine elevation. Am J Hum Genet 89:792–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moat S, Carling R, Nix A et al (2010) Multicentre age-related reference intervals for cerebrospinal fluid serine concentrations: implications for the diagnosis and follow-up of serine biosynthesis disorders. Mol Genet Metab 101:149–152

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Sastre A, Tort F, Stehling O et al (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89:656–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearl PL, Novotny EJ, Acosta MT et al (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54(Suppl 6):S73–S80

    Article  CAS  PubMed  Google Scholar 

  • Pearl PL, Gibson KM, Cortez MA et al (2009) Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 32:343–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Arellano I, Carmona-Álvarez F, Martinez AI et al (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Prot Sci 19:372–382

    Google Scholar 

  • Perry TL, Urquhart N, MacLean J et al (1975) Nonketotic hyperglycinemia. Glycine accumulation due to absence of glycine cleavage in the brain. N Engl J Med 292:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Raux G, Bumsel E, Hecketsweiler B et al (2007) Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 16:83–91

    Article  CAS  PubMed  Google Scholar 

  • Reversade B, Escande-Beillard N, Dimopoulou A et al (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Skidmore DL, Chitayat D, Morgan T et al (2011) Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS). Am J Med Genet A 155:1848–1856

    Article  CAS  Google Scholar 

  • Tabatabaie L, Klomp LW, Berger R et al (2010) L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99:256–262

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Aida N, Obata T et al (2010) A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 33:85–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Hove JL, Vande Kerckhove K, Hennermann JB et al (2005) Benzoate treatment and the glycine index in nonketotic hyperglycinemia. J Inherit Metab Dis 28:651–663

    Article  PubMed  Google Scholar 

  • Wolff JA, Kulovitch S, Yu AL et al (1986) The effectiveness of benzoate in the management of seizures in nonketotic hyperglycinemia. Am J Dis Child 140:596–602

    CAS  PubMed  Google Scholar 

  • Yildirim Y, Tolun A, Tüysüz B (2011) The phenotype caused by PYCR1 mutations corresponds to geroderma dysplasticum rather than autosomal recessive cutis laxa type 2. Am J Med Genet A 155:134–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan L. K. Van Hove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Hove, J.L.K., Thomas, J.A. (2014). Disorders of Glycine, Serine, GABA, and Proline Metabolism. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics