Skip to main content

Abstract

Bile acids have well established roles as drivers of bile flow and as the catabolic end products of cholesterol metabolism, but bile acids and their metabolic precursors are increasingly recognised as important regulators of other pathways. Inborn errors have been identified in each of the main stages of bile acid synthesis (modification of sterol nucleus, side chain and conjugation) and also in a variety of steps in bile acid transport. Manifestations of these disorders reflect the lack of functional bile acids and build-up of their potentially toxic precursors. Examples include progressive liver dysfunction with fat soluble vitamin malabsoprtion, progressive neurological deterioration, hereditary spastic paraplegia and mild statin resistant hypercholesterolaemia.

Bile acids and there precursors can be detected in a variety of biological fluids including blood, urine, bile and CSF. They represent a considerable diagnostic challenge due to their natural heterogeneity. The characterisation of abnormal bile acids in these fluids has relied heavily on mass spectrometry. Single stage mass spectrometry of urine with minimal sample preparation can provide a rapid tool for the detection of abnormal patterns of bile acids sufficient to diagnose most inborn errors. Further characterisation of unusual bile acids can be achieved by gas-chromatography mass spectrometry or liquid chromatography linked to tandem mass spectrometry. Disorders of bile acid transport do not result in the production of abnormal bile acid patterns and require genetic characterisation.

Treatment for most of the disorders of bile acid synthesis is the replacement of the primary bile acids by oral administration of chenodeoxycholic and/or cholic acid. This supplies functional bile acids and has the benefit of negative feedback inhibition of potentially toxic bile acid intermediates. This is a highly effective treatment for those disorders presenting with hepatic impairment, as long as it is instigated prior to irreversible liver damage (which requires liver transplantation). Chenodeoxycholic acid has also been shown to improve neurological outcomes in patients with cerebrotendinousxanthomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnoldi A, Crimella C, Tenderini E et al (2012) Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet 81:150–157

    Article  CAS  PubMed  Google Scholar 

  • Berginer VM, Salen G, Shefer S (1984) Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 311:1649–1652

    Article  CAS  PubMed  Google Scholar 

  • Chong CPK, Mills PB, McClean P et al (2010) Response to chenodeoxycholic acid therapy in an infant with oxysterol 7 alpha-reductase deficiency. J Inherit Metab Dis 33(Suppl 1):S122

    Google Scholar 

  • Chong CPK, Mills PB, McClean P et al (2012) Bile acid-CoA ligase deficiency – a new inborn error of bile acid metabolism. J Inherit Metab Dis 35(3):521–530

    Article  PubMed  Google Scholar 

  • Clayton PT (1994) Delta 4-3-oxosteroid 5 beta-reductase deficiency and neonatal hemochromatosis [letter; comment]. J Pediatr 125:845–846

    Article  CAS  PubMed  Google Scholar 

  • Clayton PT (2011) Disorders of bile acid synthesis. J Inherit Metab Dis 34:593–604

    Article  CAS  PubMed  Google Scholar 

  • Clayton PT, Leonard JV, Lawson AM et al (1987) Familial giant cell hepatitis associated with synthesis of 3β,7α-dihydroxy- and3β,7α,12α-trihydroxy-5-cholenoic acids. J Clin Invest 79:1031–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton PT, Mills KA, Johnson AW et al (1996) Δ4-3-Oxosteroid 5β-reductase deficiency: failure of ursodeoxycholic acid therapy and response to chenodeoxycholic acid plus cholic acid. Gut 38:623–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton PT, Verrips A, Sistermans E et al (2002) Mutations in the cholesterol 27-hydoxylase gene (CYP27) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis 25:501–513

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Clayton PT et al (2000) Mutations in the gene encoding alphamethyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Article  CAS  PubMed  Google Scholar 

  • Heubi JE, Setchell KD, Rosenthal P et al (2009) Oral glycocholic acid treatment of patients with bile acid amidation defects improves growth and fat-soluble vitamin absorption. Hepatology 50:895A

    Article  Google Scholar 

  • Hylemon PB, Zhou H, Pandak WM et al (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura A, Ushijima K, Kage M et al (1991) Neonatal Dubin-Johnson syndrome with severe cholestasis: effective phenobarbital therapy. Acta Paediatr Scand 80:381–385

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Mahara R, Inoue T et al (1999) Profile of urinary bile acids in infants and children: developmental pattern of excretion of unsaturated ketonic bile acids and 7beta-hydroxylated bile acids. Pediatr Res 45:603–609

    Article  CAS  PubMed  Google Scholar 

  • Kremer AE, Van Dijk R, Leckie P et al (2012) Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology 56:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Lemonde HA, Custard EJ, Bouquet J et al (2003) Mutations in SRD5B1, the gene encoding Δ4-3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy. Gut 52(10):1494–1499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis B, Mitchell DW, Marenah CB et al (1983) Cerebrotendinous xanthomatosis: biochemical response to inhibition of cholesterol synthesis. Br Med J 287:21–22

    Article  CAS  Google Scholar 

  • Mizuochi T, Kimura A, Suzuki M et al (2011) Successful heterozygous living-donor liver transplantation for oxysterol 7α-hydroxylase deficiency in a Japanese patient. Liver Transpl 17:1059–65

    PubMed  Google Scholar 

  • Pawlikowska L, Strautnieks S, Jankowska I et al (2010) Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol 53:170–178

    Article  PubMed Central  PubMed  Google Scholar 

  • Pellicoro A, Van den Heuvel FAJ, Geuken M et al (2007) Human and rat bile acid-CoA: amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 45:340–348

    Article  CAS  PubMed  Google Scholar 

  • Pullinger CR, Eng C, Salen G et al (2002) Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110:109–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regev RH, Stolar O, Raz A et al (2002) Treatment of severe cholestasis in neonatal Dubin-Johnson syndrome with ursodeoxycholic acid. J Perinat Med 30:185–187

    PubMed  Google Scholar 

  • Russell DW (2003) The enzymes, regulation and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  • Setchell KD, Schwarz M, O’Connell NC et al (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102:1690–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Setchell KDR, Heubi JE, Bove KE et al (2003) Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124:217–232

    Article  PubMed  Google Scholar 

  • Subramaniam P, Clayton PT, Portmann BC et al (2010) Variable clinical spectrum of the most common inborn error of bile acid metabolism – 3beta-hydroxy-Delta 5-C27-steroid dehydrogenase deficiency. J Pediatr Gastroenterol Nutr 50(1):61–66

    CAS  PubMed  Google Scholar 

  • Thompson SA, Calvin J, Hogg S et al (2008) Relapsing encephalopathy in a patient with α-methylacyl-CoA racemase deficiency. J Neurol Neurosurg Psychiatry 79(4):448–450

    Article  CAS  PubMed  Google Scholar 

  • Van De Steeg E, Stránecký V, Hartmannová H et al (2012) Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 122:519–528

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Woerd WL, Van Mil SWC, Stapelbroek JM et al (2010) Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol 24:541–553

    Article  PubMed  Google Scholar 

  • Verrips A, Hoefsloot LH, Steenbergen GC et al (2000) Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 123(Pt 5):908–919

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemonde, H.A., Gissen, P., Clayton, P.T. (2014). Disorders of Bile Acid Synthesis and Biliary Transport. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics