Skip to main content

Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2013, RANDOM 2013)

Abstract

For the hard-core lattice gas model defined on independent sets weighted by an activity λ, we study the critical activity λ c (ℤ2) for the uniqueness threshold on the 2-dimensional integer lattice ℤ2. The conjectured value of the critical activity is approximately 3.796. Until recently, the best lower bound followed from algorithmic results of Weitz (2006). Weitz presented an FPTAS for approximating the partition function for graphs of constant maximum degree Δ when \(\lambda<\lambda_c({\mathbb T}_\Delta)\) where \({\mathbb T}_\Delta\) is the infinite, regular tree of degree Δ. His result established a certain decay of correlations property called strong spatial mixing (SSM) on ℤ2 by proving that SSM holds on its self-avoiding walk tree T saw(ℤ2), and as a consequence he obtained that \(\lambda_c({\mathbb Z}^2)\geq\lambda_c( {\mathbb T}_4) = 1.675\). Restrepo et al. (2011) improved Weitz’s approach for the particular case of ℤ2 and obtained that λ c (ℤ2) > 2.388. In this paper, we establish an upper bound for this approach, by showing that SSM does not hold on T saw(ℤ2) when λ > 3.4. We also present a refinement of the approach of Restrepo et al. which improves the lower bound to λ c (ℤ2) > 2.48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, F.L., Fike, C.T.: Norms and exclusion theorems. Numerische Mathematik 2, 137–141 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.J., Enting, I.G., Tsang, S.K.: Hard-square lattice gas. Journal of Statistical Physics 22(4), 465–489 (1980)

    Article  MathSciNet  Google Scholar 

  3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 3rd edn. John Wiley & Sons (2011)

    Google Scholar 

  4. van den Berg, J., Steif, J.E.: Percolation and the hard-core lattice gas model. Stochastic Processes and their Applications 49(2), 179–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanca, A., Galvin, D., Randall, D., Tetali, P.: Phase Coexistence and Slow Mixing for the Hard-Core Model on ℤ2, Preprint available from the arXiv at: http://arxiv.org/abs/1211.6182

  6. Brightwell, G.R., Häggström, O., Winkler, P.: Nonmonotonic behavior in hard-core and Widom-Rowlinson models. Journal of Statistical Physics 94(3), 415–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobrushin, R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Functional Analysis and its Applications 2(4), 302–312 (1968)

    Article  MATH  Google Scholar 

  8. Gaunt, D.S., Fisher, M.E.: Hard-Sphere Lattice Gases. I. Plane-Square Lattice. Journal of Chemical Physics 43(8), 2840–2863 (1965)

    Article  MathSciNet  Google Scholar 

  9. Kelly, F.P.: Loss Networks. Annals of Applied Probability 1(3), 319–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rácz, Z.: Phase boundary of Ising antiferromagnets near H = H c and T = 0: Results from hard-core lattice gas calculations. Physical Review B 21(9), 4012–4016 (1980)

    Article  Google Scholar 

  11. Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets. Probability Theory and Related Fields 156(1-2), 75–99 (2012)

    Article  MathSciNet  Google Scholar 

  12. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  13. Vera, J.C., Vigoda, E., Yang, L.: Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions, Preprint available from the arXiv at: http://arxiv.org/abs/1306.0431

  14. Watkins, D.S.: The matrix eigenvalue problem: GR and Krylov Subspace methods. SIAM (2007)

    Google Scholar 

  15. Weitz, D.: Counting independent sets up to the tree threshold. In: 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 140–149 (2006)

    Google Scholar 

  16. Data is available from: http://www.cc.gatech.edu/~vigoda/hardcore.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vera, J.C., Vigoda, E., Yang, L. (2013). Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics