Skip to main content

Randomness-Efficient Curve Samplers

  • Conference paper
  • 1772 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8096))

Abstract

Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.

The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(logN + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TSU06] they obtained curve samplers with near-optimal randomness complexity.

We present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor), sampling curves of degree (mlog q (1/δ))O(1) in \(\mathbb{F}_q^m\). Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellare, M., Rompel, J.: Randomness-efficient oblivious sampling. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS 1994, pp. 276–287. IEEE Computer Society, Washington, DC (1994)

    Chapter  Google Scholar 

  4. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621. ACM, New York (2003)

    Google Scholar 

  5. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17, 230–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chor, B., Goldreich, O.: On the power of two-point based sampling. J. Complex. 5(1), 96–106 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3) (June 2007)

    Google Scholar 

  8. Guruswami, V., Indyk, P.: Expander-based constructions of efficiently decodable codes. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS 2001, pp. 658–667. IEEE Computer Society, Washington, DC (2001)

    Google Scholar 

  9. Gillman, D.: A Chernoff bound for random walks on expander graphs. SIAM J. Comput. 27(4), 1203–1220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldreich, O.: A sample of samplers: A computational perspective on sampling. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 302–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy. IEEE Trans. Inf. Theor. 54(1), 135–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes. J. ACM 56, 20:1–20:34 (2009)

    Google Scholar 

  13. Moshkovitz, D., Raz, R.: Sub-constant error low degree test of almost-linear size. SIAM J. Comput. 38(1), 140–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52, 43–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)

    Google Scholar 

  16. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM J. Discret. Math. 13(1), 2–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM 52(2), 172–216 (2005)

    Article  MathSciNet  Google Scholar 

  19. Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and sampling. Comput. Complex. 15(4), 298–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. SIAM J. Comput. 28, 1433–1459 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ta-Shma, A., Umans, C.: Better lossless condensers through derandomized curve samplers. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 177–186. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  22. Umans, C.: Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci. 67(2), 419–440 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zuckerman, D.: Randomness-optimal oblivious sampling. In: Proceedings of the Workshop on Randomized Algorithms and Computation, pp. 345–367. John Wiley & Sons, Inc., New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z. (2013). Randomness-Efficient Curve Samplers. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics