Skip to main content

Abstract

We prove new upper bounds on the size of families of vectors in \({\mathbb Z}_m^n\) with restricted modular inner products, when m is a large integer. More formally, if \(\vec{u}_1,\ldots,\vec{u}_t \in{\mathbb Z}_m^n\) and \(\vec{v}_1,\ldots,\vec{v}_t \in{\mathbb Z}_m^n\) satisfy \(\langle\vec{u}_i,\vec{v}_i\rangle\equiv0\pmod m\) and \(\langle\vec{u}_i,\vec{v}_j\rangle\not\equiv0\pmod m\) for all i ≠ j ∈ [t], we prove that t ≤ O(m n/2 + 8.47). This improves a recent bound of t ≤ m n/2 + O(log(m)) by [BDL13] and is the best possible up to the constant 8.47 when m is sufficiently larger than n.

The maximal size of such families, called ‘Matching-Vector families’, shows up in recent constructions of locally decodable error correcting codes (LDCs) and determines the rate of the code. Using our result we are able to show that these codes, called Matching-Vector codes, must have encoding length at least K 19/18 for K-bit messages, regardless of their query complexity. This improves a known super linear bound of \( K2^{\Omega({\sqrt{\log K}})}\) proved in [BDL13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing boolean functions as polynomials modulo composite numbers. In: Computational Complexity, pp. 455–461 (1994)

    Google Scholar 

  2. Bhowmick, A., Dvir, Z., Lovett, S.: New bounds on matching vector families. In: 45th ACM Symposium on Theory of Computing, STOC (2013)

    Google Scholar 

  3. Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: Local list decoding with a constant number of queries. In: 51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 715–722 (2010)

    Google Scholar 

  4. Babai, L., Frankl, P.: Linear algebra methods in combinatorics (1998)

    Google Scholar 

  5. Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally decodable codes of subexponential length. Electronic Colloquium on Computational Complexity (ECCC), TR10-173 (2010)

    Google Scholar 

  6. Dvir, Z., Gopalan, P., Yekhanin, S.: Matching vector codes. SIAM J. Comput. 40(4), 1154–1178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st ACM Symposium on Theory of Computing (STOC), pp. 39–44 (2009)

    Google Scholar 

  8. Goldreich, O., Karloff, H., Schulman, L.J., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. In: 17th IEEE Computational Complexity Conference (CCC), pp. 175–183 (2002)

    Google Scholar 

  9. Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica 20(1), 71–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Itoh, T., Suzuki, Y.: Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions on Information and Systems E93-D(2), 263–270 (2010)

    Article  Google Scholar 

  11. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and System Sciences 69(3), 395–420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: 32nd ACM Symposium on Theory of Computing (STOC), pp. 80–86 (2000)

    Google Scholar 

  13. Kedlaya, K.S., Yekhanin, S.: Locally decodable codes from nice subsets of finite fields and prime factors of Mersenne numbers. SIAM J. Comput. 38(5), 1952–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Raghavendra, P.: A note on Yekhanin’s locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), TR07-016 (2007)

    Google Scholar 

  15. Tao, T., Vu, V.H.: Additive Combinatorics (2007)

    Google Scholar 

  16. Woodruff, D.P.: New lower bounds for general locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), TR07-006 (2007)

    Google Scholar 

  17. Woodruff, D.P.: A quadratic lower bound for three-query linear locally decodable codes over any field. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 766–779. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. Journal of the ACM 55(1), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  19. Yuan, C., Guo, Q., Kan, H.: A novel elementary construction of matching vectors. Information Processing Letters 112(12), 494–496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dvir, Z., Hu, G. (2013). Matching-Vector Families and LDCs over Large Modulo. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics