Skip to main content

Phase Coexistence and Slow Mixing for the Hard-Core Model on ℤ2

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8096))

Abstract

For the hard-core model (independent sets) on ℤ2 with fugacity λ, we give the first explicit result for phase coexistence by showing that there are multiple Gibbs states for all λ > 5.3646. Our proof begins along the lines of the standard Peierls argument, but we add two significant innovations. First, building on the idea of fault lines introduced by Randall [19], we construct an event that distinguishes two boundary conditions and yet always has long contours associated with it, obviating the need to accurately enumerate short contours. Second, we obtain vastly improved bounds on the number of contours by relating them to a new class of self-avoiding walks on an oriented version of ℤ2. We also extend our characterization of fault lines to show that local Markov chains will mix slowly when λ > 5.3646 on lattice regions with periodic (toroidal) boundary conditions and when λ > 7.1031 with non-periodic (free) boundary conditions. The arguments here rely on a careful analysis that relates contours to taxi walks and represent a sevenfold improvement to the previously best known values of λ [19].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, S.: Upper bounds for the connective constant of self-avoiding walks. Combinatorics, Probability & Computing 2, 115–136 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R., Entig, I., Tsang, S.: Hard-square lattice gas. J. Stat. Phys. 22, 465–489 (1980)

    Article  Google Scholar 

  3. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probability Theory and Related Fields 153, 511–542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. van den Berg, J., Steif, J.E.: Percolation and the hard-core lattice model. Stochastic Processes and their Applications 49, 179–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgs, C.: Personal communication

    Google Scholar 

  6. Borgs, C., Chayes, J.T., Frieze, A., Kim, J.H., Tetali, P., Vigoda, E., Vu, V.H.: Torpid mixing of some MCMC algorithms in statistical physics. In: Proc. 40th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 218–229 (1999)

    Google Scholar 

  7. Brightwell, G.R., Häggström, O., Winkler, P.: Non-monotonic behavior in hard-core and Widom-Rowlinson models. J. Stat. Phys. 94, 415–435 (1999)

    Article  MATH  Google Scholar 

  8. Dobrushin, R.L.: The problem of uniqueness of a Gibbs random field and the problem of phase transitions. Functional Analysis and its Applic. 2, 302–312 (1968)

    Article  MATH  Google Scholar 

  9. Galvin, D., Kahn, J.: On phase transitions in the hard-core model on Z d. Combinatorics, Probability & Computing 13, 137–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)

    Google Scholar 

  11. Hammersley, J.M., Welsh, D.J.A.: Further results on the rate of convergence to the connective constant of the hyper cubic lattice. Quarterly J. of Mathematics 2, 108–110 (1962)

    Article  MathSciNet  Google Scholar 

  12. Kesten, H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960–969 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubezky, E., Sly, A.: Critical Ising on the square lattice mixes in polynomial time. To appear in Communications in Mathematical Physics

    Google Scholar 

  14. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling independent sets. Random Structures & Algorithms 15, 229–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  17. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physics Review Letters 65, 117–149 (1944)

    MathSciNet  MATH  Google Scholar 

  18. Radulescu, D.C., Styer, D.F.: The Dobrushin-Shlosman phase uniqueness criterion and applications to hard squares. J. Stat. Phys. 49, 281–295 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Randall, D.: Slow mixing of Glauber dynamics via topological obstructions. In: Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 870–879 (2006)

    Google Scholar 

  20. Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved mixing condition on the grid for counting and sampling independent sets. In: Proc. 52nd IEEE Symp. on Foundations of Computer Science (FOCS), pp. 140–149 (2011)

    Google Scholar 

  21. Sinclair, A.J., Jerrum, M.R.: Approximate counting, uniform generation and rapidly mixing Markov chains. Information and Computation 82, 93–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sly, A.: Computational Transition at the Uniqueness Threshold. In: Proc. 51st IEEE Symp. on Foundations of Computer Science (FOCS), pp. 287–296 (2010)

    Google Scholar 

  23. Steele, J.M.: Probability Theory and Combinatorial Optimization. SIAM (1997)

    Google Scholar 

  24. Vera, J.C., Vigoda, E., Yang, L.: Improved bounds on the phase transition for the hard-core model in 2-dimensions. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM 2013. LNCS, vol. 8096, pp. 705–719. Springer, Heidelberg (2013)

    Google Scholar 

  25. Weitz, D.: Counting independent sets up to the tree threshold. In: Proc. 38th ACM Symp. on the Theory of Computing (STOC), pp. 140–149 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanca, A., Galvin, D., Randall, D., Tetali, P. (2013). Phase Coexistence and Slow Mixing for the Hard-Core Model on ℤ2 . In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics