Skip to main content

Abstract

We present a new bound relating edge connectivity in a simple, unweighted graph with effective resistance in the corresponding electrical network. The bound is tight. While we believe the bound is of independent interest, our work is motivated by the problem of constructing combinatorial and spectral sparsifiers of a graph, i.e., sparse, weighted sub-graphs that preserve cut information (in the case of combinatorial sparsifiers) and additional spectral information (in the case of spectral sparsifiers). Recent results by Fung et al. (STOC 2011) and Spielman and Srivastava (SICOMP 2011) show that sampling edges with probability based on edge-connectivity gives rise to a combinatorial sparsifier whereas sampling edges with probability based on effective resistance gives rise to a spectral sparsifier. Our result implies that by simply increasing the sampling probability by a O(n 2/3) factor in the combinatorial sparsifier construction, we also preserve the spectral properties of the graph. Combining this with the algorithms of Ahn et al. (SODA 2012, PODS 2012) gives rise to the first data stream algorithm for the construction of spectral sparsifiers in the dynamic setting where edges can be added or removed from the stream. This was posed as an open question by Kelner and Levin (STACS 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: SODA, pp. 459–467 (2012)

    Google Scholar 

  3. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: PODS, pp. 5–14 (2012)

    Google Scholar 

  4. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in õ(n 2) time. In: STOC, pp. 47–55 (1996)

    Google Scholar 

  5. Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  6. Christiano, P., Kelner, J.A., Madry, A., Spielman, D.A., Teng, S.-H.: Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. In: STOC, pp. 273–282 (2011)

    Google Scholar 

  7. Cormode, G.: Sketch techniques for approximate query processing. In: Cormode, G., Garofalakis, M., Haas, P., Jermaine, C. (eds.) Synposes for Approximate Query Processing: Samples, Histograms, Wavelets and Sketches. Foundations and Trends in Databases. NOW Publishers (2011)

    Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization (Edmonds Festschrift). LNCS, vol. 2570, pp. 31–33. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2-3), 207–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fung, W.S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general framework for graph sparsification. In: STOC, pp. 71–80 (2011)

    Google Scholar 

  12. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipshitz mapping into Hilbert Space. Contemporary Mathematics 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct elements problem. In: PODS, pp. 41–52 (2010)

    Google Scholar 

  14. Karzanov, A.: Determining a maximal flow in a network by the method of preflows. Soviet Math. Dokl. 15(2) (1974)

    Google Scholar 

  15. Kelner, J.A., Levin, A.: Spectral sparsification in the semi-streaming setting. In: STACS, pp. 440–451 (2011)

    Google Scholar 

  16. Khandekar, R., Rao, S., Vazirani, U.V.: Graph partitioning using single commodity flows. J. ACM 56(4) (2009)

    Google Scholar 

  17. Lyons, R., Pemantle, R., Peres, Y.: Resistance bounds for first-passage percolation and maximum flow. J. Comb. Theory, Ser. A 86(1), 158–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: STOC, pp. 81–90 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, K.J., Guha, S., McGregor, A. (2013). Spectral Sparsification in Dynamic Graph Streams. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics