Optimization and Scaling up of the Fabrication Process of Polymer Nanocomposites: Polyamide-6/Montmorillonite Case Study

  • K. Pielichowski
  • T. M. Majka
  • A. Leszczyńska
  • M. Giacomelli
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Although polyamide (PA) nanocomposites reinforced with montmorillonite (MMT) are processed for more than two decades, the primary technological problem related to optimization of processing conditions to fully exploit properties of these nanomaterials has still to be addressed. The processing of polymer nanocomposites by melt intercalation consists, in principle, of the following stages: preparation and drying of raw materials, preparation of a premix masterbatch, dosing the premix masterbatch into a feeding zone, heating and melting the polyamide-based matrix, an extrusion of a fluid composition followed by a set of auxiliary operations. The process of obtaining polyamide nanocomposites with the desired properties depends on numerous processing parameters that, when varied, affect the quality of manufactured products. Therefore, in this chapter techniques for obtaining polyamide-6/montmorillonite nanocomposites (PA6/MMT NCs), are presented along with discussion of the optimization process for the preparation of PA nanocomposites. Important technological problems arising during the processing are discussed in this chapter, as well as present issues which need to be addressed in scaling up the production from laboratory to industrial scale.

Keywords

Rotational Speed Polymer Matrix Molybdenium Disulfide Injection Molding Extrusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially funded by the European Commission (FP7 Project CP-FP; Project Reference: 228536-2) and by the National Science Centre in Poland under contract UMO-2011/01/M/ST8/06834.

References

  1. 1.
    Fengge, G.: Clay/polymer composites: The story. Rev. Feature Mater. Today 7, 50–55 (2004). doi: 10.1016/S1369-7021(04)00509-7 Google Scholar
  2. 2.
    Schmidt, D., Shah, D., Giannelis, E.P.: New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 6, 205–212 (2002)CrossRefGoogle Scholar
  3. 3.
    Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRefGoogle Scholar
  4. 4.
    Azeez, A.A., Rhee, K.Y., Park, S.J., Hui, D.: Epoxy clay nanocomposites—processing, properties and applications: A review. Compos.: Part B 45, 308–320 (2013)CrossRefGoogle Scholar
  5. 5.
    Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRefGoogle Scholar
  6. 6.
    Pfaendner, R.: Nanocomposites: Industrial opportunity or challenge? Polym. Degrad. Stab. 95, 369–373 (2010)CrossRefGoogle Scholar
  7. 7.
    Lepoittevina, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Calberg, C., Jerome, R., Henrist, C., Rulmont, A., Dubois, P.: Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: A masterbatch process. Polymer 44, 2033–2040 (2003)CrossRefGoogle Scholar
  8. 8.
    Majka, T.M., Leszczyńska, A., Pielichowski, K.: Comparison of rheological properties of polyamide-6 and its nanocomposites with montmorillonite, obtained by melt intercalation. Czasopismo Techniczne in print (2013)Google Scholar
  9. 9.
    Meneghetti, P., Qutubuddin, S.: Application of mean-field model of polymer melt intercalation in organo-silicates for nanocomposites. J. Colloid Interface Sci. 288, 387–389 (2005)CrossRefGoogle Scholar
  10. 10.
    Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)CrossRefGoogle Scholar
  11. 11.
    Raman, N., Sudharsan, S., Pothiraj, K.: Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites: A review. J. Saudi Chem. Soc. 16, 339–352 (2012)CrossRefGoogle Scholar
  12. 12.
    Nguyen, T.R.: Polymer-based nanocomposites for organic optoelectronic devices: A review. Surf. Coat. Technol. 206, 742–752 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhang, S., Sun, D., Fu, Y., Du, H.: Recent advances of superhard nanocomposite coatings: A review. Surf. Coat. Technol. 167, 113–119 (2003)CrossRefGoogle Scholar
  14. 14.
    Silva, F., Njuguna, J., Sachse, S., Pielichowski, K., Leszczynska, A., Giacomelli, M.: The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Mater Des in print (2013)Google Scholar
  15. 15.
    Njuguna, J., Pielichowski, K., Desai, S.: Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 19, 947 (2008)CrossRefGoogle Scholar
  16. 16.
    Shirazi, S.M.: Investigation of physical and chemical properties of polypropylene hybrid nanocomposites. Mater. Des. 34, 474–478 (2012)CrossRefGoogle Scholar
  17. 17.
    Beyer, B.: Nanocomposites: A new class of flame retardants for polymers. Plast. Addit. Compound. 4, 22–28 (2002)CrossRefGoogle Scholar
  18. 18.
    Krishnamoorti, R., Yurekli, K.: Rheology of polymer layered silicate nanocomposites. Curr. Opin. Colloid Interface Sci. 6, 464–470 (2001)CrossRefGoogle Scholar
  19. 19.
    Faucheu, J., Gauthier, C., Chazeau, L., Cavaille, J.Y., Mellon, V., Lami, M.B.: Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: Short review and recent advances. Polymer 51, 6–17 (2010)CrossRefGoogle Scholar
  20. 20.
    Choudalakis, G., Gotsis, A.D.: Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 45, 967–984 (2009)CrossRefGoogle Scholar
  21. 21.
    Shokuhfar, A., Shahabadi, A.Z., Atai, A.A., Nejad, S.E., Termeh, M.: Predictive modeling of creep in polymer/layered silicate nanocomposites. Polym. Test. 31, 345–354 (2012)CrossRefGoogle Scholar
  22. 22.
    Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos.: Part A 41, 1345–1367 (2010)CrossRefGoogle Scholar
  23. 23.
    Hu, K.H., Wang, J., Schraubed, S., Xua, J.Z., Hua, X.G., Stenglerd, R.: Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials. Wear 266, 1198–1207 (2009)CrossRefGoogle Scholar
  24. 24.
    Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17, 459–494 (2010)CrossRefGoogle Scholar
  25. 25.
    Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 70, 1764–1776 (2010)CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    Njuguna, J., Pielichowski, K., Fan, J.: Polymer nanocomposites for aerospace applications. In: Gao, F. (ed.) Advances in Polymer Nanocomposites: Types and Applications. Woodhead Publishing Ltd., Cambridge (2012)Google Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    Kouini, B., Serier, A.: Properties of polypropylene/polyamide nanocomposites prepared by melt processing with a PP-g-MAH compatibilizer. Mater. Des. 34, 313–318 (2012)CrossRefGoogle Scholar
  38. 38.
    Rijswijk, K., Lindstedt, S., Vlasveld, D.P.N., Bersee, H.E.N., Beukers, A.: Reactive processing of anionic polyamide-6 for application in fiber composites: A comparitive study with melt processed polyamides and nanocomposites. Polym. Test. 25, 873–887 (2006)CrossRefGoogle Scholar
  39. 39.
    Lin, J.C., Nien, M.H., Yu, F.M.: Morphological structure, processing and properties of propylene polymer matrix nanocomposites. Compos. Struct. 71, 78–82 (2005)CrossRefGoogle Scholar
  40. 40.
    Chandra, A., Turng, L.S., Gopalan, P., Rowell, R.M., Gong, S.: Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: A masterbatch process. Polymer 44, 2033–2040 (2003)CrossRefGoogle Scholar
  41. 41.
    Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 40, 1511–1575 (2006)CrossRefGoogle Scholar
  42. 42.
    Abend, S., Lagaly, G.: Sol–gel transitions of sodium montmorillonite dispersions. Appl. Clay Sci. 16, 201–227 (2000)CrossRefGoogle Scholar
  43. 43.
    Pavlos CM.: Manufacturing processes for advanced materials: Nanocomposites. AeonClad coatings LLC In: http://www.nist.gov/tip/wp/pswp/upload/273_manufacturing_processes_for_advanced_materials.pdf
  44. 44.
    Pagacz, J., Pielichowski, K.: Modification of layered silicates for applications in nanotechnology. Czasopismo Techniczne z 1-Ch: 133–147 (2007)Google Scholar
  45. 45.
    Pospíšil, M., Kalendová, A., Capková, P., Šimoník, J., Valášková, M.: Structure analysis of intercalated layer silicates: Combination of molecular simulations and experiment. J. Colloid Interface Sci. 277, 154–161 (2004)CrossRefGoogle Scholar
  46. 46.
    He, H., Ma, Y., Zhu, J., Yuan, P., Qing, Y.: Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl. Clay Sci. 48, 67–72 (2010)CrossRefGoogle Scholar
  47. 47.
    Elban, W.L., Howarter, J.A., Richardson, M.C., Stutzman, P.E., Forster, A.M., Nolte, A.J., Holmes, G.A.: Influence of solvent washing on interlayer structure of alkylammonium montmorillonites. Appl. Clay Sci. 61, 29–36 (2012)CrossRefGoogle Scholar
  48. 48.
    Jiang, J.Q., Cooper, C., Ouki, S.: Comparison of modified montmorillonite adsorbents Part I: Preparation, characterization and phenol adsorption. Chemosphere 47, 711–716 (2002)CrossRefGoogle Scholar
  49. 49.
    Vazquez, A., López, M., Kortaberria, G., Martín, L., Mondragon, I.: Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Appl. Clay Sci. 41, 24–36 (2008)CrossRefGoogle Scholar
  50. 50.
    Paiva, L.B., Morales, A.R., Díaz, R.F.V.: Organoclays: Properties, preparation and applications. Appl. Clay Sci. 42, 8–24 (2008)CrossRefGoogle Scholar
  51. 51.
    Mittal, V.: Modification of montmorillonites with thermally stable phosphonium cations and comparison with alkylammonium montmorillonites. Appl. Clay Sci. 56, 103–109 (2012)CrossRefGoogle Scholar
  52. 52.
    Chefetz, B., Eldad, S., Polubesova, T.: Interactions of aromatic acids with montmorillonite: Ca2+- and Fe3+-saturated clays versus Fe3+–Ca2+-clay system. Geoderma 160, 608–613 (2011)CrossRefGoogle Scholar
  53. 53.
    Kozak, M., Domka, L.: Adsorption of the quaternary ammonium salts on montmorillonite. J. Phys. Chem. Solid. 65, 441–445 (2004)CrossRefGoogle Scholar
  54. 54.
    Radojevic, Z., Mitrovic, A.: Study of montmorillonite and cationic activators system rheological characteristic change mechanism. J. Eur. Ceram. Soc. 27, 1691–1695 (2007)CrossRefGoogle Scholar
  55. 55.
    Garcıa-Lopez, D., Gobernado-Mitre, I., Fernandez, J.F., Merino, J.C., Pastor, J.M.: Influence of clay modification process in PA6-layered silicate nanocomposite properties. Polymer 46, 2758–2765 (2005)CrossRefGoogle Scholar
  56. 56.
    Davis, R.D., Gilman, J.W., VanderHart, D.L.: Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polym. Degrad. Stab. 79, 111–121 (2003)CrossRefGoogle Scholar
  57. 57.
    Fornes, T.D., Yoona, P.J., Hunterb, D.L., Keskkula, H., Paul, D.R.: Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43, 5915–5933 (2002)CrossRefGoogle Scholar
  58. 58.
    Liu, X., Wu, Q.: Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur. Polym. J. 38, 1383–1389 (2002)CrossRefGoogle Scholar
  59. 59.
    Winberg, P., Eldrup, M., Pedersen, N.J., Es, M.A., Maurer, F.H.J.: Free volume sizes in intercalated polyamide 6/clay nanocomposites. Polymer 46, 8239–8249 (2005)CrossRefGoogle Scholar
  60. 60.
    Picard, E., Vermogen, A., Gerard, J.F., Espuche, E.: Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state consequences on modeling. J. Membr. Sci. 292, 133–144 (2007)CrossRefGoogle Scholar
  61. 61.
    Muzny, C.D., Butler, B.D., Hanley, H.J.M., Tsvetkov, F., Peiffer, D.G.: Clay pellet dispersion in polymer matrix. Mater. Lett. 28, 379–384 (1996)CrossRefGoogle Scholar
  62. 62.
    Farahani, R.D., Ahmad Ramazani, S.A.: Melt preparation and investigation of properties of toughened polyamide 66 with SEBS-g-MA and their nanocomposites. Mater. Des. 29, 105–111 (2008)CrossRefGoogle Scholar
  63. 63.
    Pramoda, K.P., Liu, T., Liu, Z., He, C., Sue, H.J.: Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym. Degrad. Stab. 81, 47–56 (2003)CrossRefGoogle Scholar
  64. 64.
    Zulfiqar, S., Ahmad, Z., Ishaq, M., Sarwar, M.I.: Aromatic–aliphatic polyamide/montmorillonite clay nanocomposite materials: Synthesis, nanostructure and properties. Mater. Sci. Eng., A 525, 30–36 (2009)CrossRefGoogle Scholar
  65. 65.
    Zulfiqar, S., Sarwar, M.I.: Investigating the structure–property relationship of aromatic–aliphatic polyamide/layered silicate hybrid films. Springer Ser. Solid-State Sci. 11, 1246–1251 (2009)CrossRefGoogle Scholar
  66. 66.
    Yu, S., Zhao, J., Chen, G., Juay, Y.K., Yong, M.S.: The characteristics of polyamide layered-silicate nanocomposites. J. Mater. Process. Technol. 192–193, 410–414 (2007)CrossRefGoogle Scholar
  67. 67.
    Jadav, G.L., Singh, P.S.: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J. Membr. Sci 32, 257–267 (2009)CrossRefGoogle Scholar
  68. 68.
    Chavarria, F., Paul, D.R.: Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45, 8501–8515 (2004)CrossRefGoogle Scholar
  69. 69.
    Zulfiqar, S., Kausar, A., Rizwan, M., Sarwar, M.I.: Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl. Surf. Sci. 255, 2080–2086 (2008)CrossRefGoogle Scholar
  70. 70.
    Zulfiqar, S., Lieberwirth, I., Ahmad, Z., Sarwar, M.I.: Influence of oligomerically modified reactive montmorillonite on thermal and mechanical properties of aromatic polyamide–clay nanocomposites. Acta Mater. 56, 4905–4912 (2008)CrossRefGoogle Scholar
  71. 71.
    Monticelli, O., Musina, Z., Frache, A., Bellucci, F., Camino, G., Russo, S.: Influence of compatibilizer degradation on formation and properties of PA6/organoclay nanocomposites. Poly. Degrad. Stab. 92, 370–378 (2007)CrossRefGoogle Scholar
  72. 72.
    Fornes, T.D., Paul, D.R.: Crystallization behavior of nylon 6 nanocomposites. Polymer 44, 3945–3961 (2003)CrossRefGoogle Scholar
  73. 73.
    Zammarano, M., Bellayer, S., Gilman, J.W., Franceschi, M., Beyer, F.L., Harris, R.L., Meriani, S.: Delamination of organo-modified layered double hydroxides in polyamide 6 by melt processing. Polymer 47, 652–662 (2006)CrossRefGoogle Scholar
  74. 74.
    Liu, T.X., Liu, Z.H., Ma, K.X., Shen, L., Zeng, K.Y., He, C.B.: Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Compos. Sci. Technol. 63, 331–337 (2003)CrossRefGoogle Scholar
  75. 75.
    Incarnato, L., Scarfato, P., Russo, G.M., Di Maio, L., Iannelli, P., Acierno, D.: Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer 44, 4625–4634 (2003)CrossRefGoogle Scholar
  76. 76.
    Pielichowski, K., Leszczyńska, A.: Polyoxymethylene-based nanocomposites with montmorillonite: An introductory study. Polimery 2, 143 (2006)Google Scholar
  77. 77.
    Leszczyńska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R.: Polymer/montmorillonite nanocomposites with improved thermal properties part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 453, 75 (2007)CrossRefGoogle Scholar
  78. 78.
    Leszczyńska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R.: Polymer/montmorillonite nanocomposites with improved thermal properties part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim. Acta 454, 1 (2007)CrossRefGoogle Scholar
  79. 79.
  80. 80.
  81. 81.
  82. 82.
    Majka, T.M., Leszczyńska, A., Pielichowski, K., Dworakowska, S.: Optymalizacja procesu suszenia poliamidu-6 w warunkach laboratoryjnych III Ogólnopolska Sesja Kół Naukowych w Tarnobrzegu w Państwowej Wyższej Szkole Zawodowej Tarnobrzeg in Print (2012)Google Scholar
  83. 83.
    Pielichowski, K., Leszczyńska, A., Njuguna, J.: Mechanism of thermal stability enhancement in polymer nanocomposites. In: Mittal, V. (ed.) Optimization of Polymer Nanocomposite Properties. Wiley, Weinheim (2010)Google Scholar
  84. 84.
    Pielichowski, K., Leszczyńska, A., Njuguna, J.: Mechanisms of thermal degradation of layered silicates modified with ammonium and other thermally stable salts. In: Mittal, V. (ed.) Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge University Press, Cambridge (2011)Google Scholar
  85. 85.
    Crosby, A.J., Lee, J.Y.: Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 47, 217–229 (2007)CrossRefGoogle Scholar
  86. 86.
    Batista, C.A., Archer, L.A.: Polymer/Silica Nanocomposites. Department of Chemical Engineering, New York (2005)Google Scholar
  87. 87.
    Picu, C.R., Sarvestani, A., Ozmusul, M.S.: Atomistically informed continuum model of polymer-based nanocomposites. Mater. Res. Soc. 740, I8.1.1–I8.1.6 (2003)Google Scholar
  88. 88.
    Sperling, L.H.: Introduction to Physical Polimer Science. Willey Interscience Bethlehem Pennsylvania (2006)Google Scholar
  89. 89.
    Toth, R., Coslanich, A., Ferrone, M., Fermeglia, M., Pricl, S., Miertus, S., Chiellini, E.: Computer simulation of polypropylene/organoclay nanocomposites: Characterization of atomic scale structure and prediction of binding energy. Polymer 45, 8075–8083 (2004)CrossRefGoogle Scholar
  90. 90.
    Leszczynska, A., Pielichowski, K.: Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J. Therm. Anal. Calorim. 93, 677 (2008)CrossRefGoogle Scholar
  91. 91.
    Sachse, S., Silva, F., Zhu, H., Irfan, A., Leszczyńska, A., Pielichowski, K., Ermini, V., Blazquez, M., Kuzmenko, O., Njuguna, J.: The effect of nanoclay on dust generation during drilling of PA6 nanocomposites. J. Nanomaterials in print (2012)Google Scholar
  92. 92.
    Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., A 28, 1–63 (2000)CrossRefGoogle Scholar
  93. 93.
    Yamakawa, R.S., Razzino, C.A., Correa, C.A., Hage, E.: Influence of notching and molding conditions on determination of EWF parameters in polyamide 6. Polym. Test. 23, 195–202 (2004)CrossRefGoogle Scholar
  94. 94.
    Yebra-Rodriguez, A., Alvarez-Lloret, P., Yebra, A., Cardell, C., Rodriguez-Navarro, A.B.: Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci. 51, 414–418 (2011)CrossRefGoogle Scholar
  95. 95.
    Muller, J., Grosse, S., Kummer, S., Masarati, E., Consalvi, M., Fisher, D.: Scale-up of an on line process monitoring system to an industrial extruder to determine the concentration and dispersion of polymer composites. J. Nanostruct. Polym. Nanocomposites 8 (2012)Google Scholar
  96. 96.
  97. 97.
    Giacomelli, M., Pielichowski, K., Leszczyńska, A.: Thermoplastic polymer nanocomposites with montmorillonite-lab vs industrial scale fabrication. IOP Conf. Ser. Mater. Sci. Eng. 40, 1–6 (2012)CrossRefGoogle Scholar
  98. 98.
    Nanocomposites-A Global Strategic Business Report, Mar 2011, published by Electronics.ca, http://www.electronics.ca/presscenter/articles/1404/1/Global-Nanocomposites-Market-to-Reach-13-Billion-Pounds–by-2015/Page1.html
  99. 99.
    Nanocomposites, Nanoparticles, Nanoclays, and Nanotubes, June 2006, published by BCC Research, http://www.bccresearch.com/report/NAN021C.html
  100. 100.
    Potential Market for Carbon Nanomaterials’ Applications, 28 Feb 2011, published by Frost & Sullivan www.nist.gov/cnst/upload/Valenti-NIST.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Pielichowski
    • 1
  • T. M. Majka
    • 1
  • A. Leszczyńska
    • 1
  • M. Giacomelli
    • 2
  1. 1.Department of Chemistry and Technology of PolymersCracow University of TechnologyKrakówPoland
  2. 2.Grado Zero EspaceMontelupo FiorentinoItaly

Personalised recommendations