Skip to main content

Graphite-Based Nanocomposites to Enhance Mechanical Properties

  • Chapter
  • First Online:
Structural Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Carbon based materials such as diamond and graphite are known to mankind for ages. Graphite is highly anisotropic and the properties of single layer of graphite were known for long. In recent years, nanoscale materials using carbon nanotubes have provided opportunities for researchers to engineer new materials with enhanced properties but graphite-based fillers in the polymer nanocomposites has taken forefront in research of many area upon the discovery of graphene, a single layer of graphite by Andre et al. in 2004 due to its extraordinary properties. Due to high surface energy and low density, it is difficult to disperse graphene in polymeric matrix and hence some of the methods identified to homogenously disperse graphite-based fillers are described here such as solution mixing, melt mixing, in situ polymerization and grafting. Nanocomposites prepared using graphite-based reinforcements to enhance mechanical properties in different polymeric matrix is discussed. Finally, applications and challenges of commercialization of these nanocomposites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ash, B.J., Stone, J., Rogers, D.F., et al.: Investigation into the thermal and mechanical behavior of PMMA/Alumina Nanocomposites. Mater. Res. Soc. Symp. Proc. 661, 661 (2000)

    Article  Google Scholar 

  2. Bai, H., Xu, Y., Zhao, L., Li, C., Shi, G.: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 13, 1667 (2009)

    Article  Google Scholar 

  3. Bortz, D.R., Heras, E.G., Martin-Gullon, I.: Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45, 238 (2012)

    Article  Google Scholar 

  4. Bourlinos A.B., Gournis D., etridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050 (2003)

    Google Scholar 

  5. Chen, G.H., Wu, D.J., Weng, W.G., He, B., Yan, W.L.: Preparation of polystyrene/graphite nanosheets composite. Polymer 42, 4813 (2001)

    Article  Google Scholar 

  6. Chen, G., Weng, W., Wu, D., Wu, C.: PMMA/graphite nanosheets composite and its conducting properties. Eur. Polymer J. 39, 2329 (2003)

    Article  Google Scholar 

  7. Chen, X.M., Shen, J.W., Huang, W.Y.: Novel electrically conductive polypropylene/graphite nanocomposites. J. Mater. Sci. Lett. 21, 213 (2002)

    Article  Google Scholar 

  8. Chung D.D.L.: Review: Exfoliation of graphite. J. Mater. Sci. 22, 4190 (1987)

    Google Scholar 

  9. Compton, O.C., Nguyen, S.B.T.: Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 6, 711 (2010)

    Article  Google Scholar 

  10. Das, B., Rasad, K.E., Ramamurty, U., Rao, C.N.R.: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12), 125705 (2009)

    Article  Google Scholar 

  11. Desai, S.: Fabrication and analysis of highly conducting graphite flake composites. PhD Thesis, Institute for Materials Research, University of Leeds, Leeds. United Kingdom (2006)

    Google Scholar 

  12. Desai, S., Njuguna, J.: Enhancement of thermal conductivity of materials using different forms of natural graphite Minea A A (ed.) Advances in Industrial Heat Transfer. CRC press 2012, Chapter 6, 201 (2012)

    Google Scholar 

  13. Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814 (2009)

    Article  Google Scholar 

  14. Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098 (2009)

    Article  Google Scholar 

  15. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  16. Geng, Y., Wang, S.J., Kim, J.-K.: Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Int. Sci. 336, 592 (2009)

    Article  Google Scholar 

  17. Giannelis, E.P.: Polymer-layered silicate nanocomposites: synthesis, roperties and applications. Appl. Organometalic Chem. 12, 675 (1998)

    Article  Google Scholar 

  18. Gonsalves, K.E., Chen, X., Baraton, M.I.: Mechanistic investigation of the preparation of polymer/ceramic nanocomposites. Nanostruct. Mater. 9, 181 (1997)

    Article  Google Scholar 

  19. Higginbotham, A.L., Lomeda, J.R., Morgan, A.B., Tour, J.M.: Graphite oxide flame-retardant polymer nanocomposites. ACS Appl. Mater. Int. 1(10), 2256 (2009)

    Article  Google Scholar 

  20. Salavagione, H.J., Martínez, G., Ellis, G.: Graphene-based polymer nanocomposites, hysics and applications of Graphene—Experiments, Dr. Mikhailov, S. (ed.), (2011). ISBN: 978-953-307-217-3

    Google Scholar 

  21. Jang, J.Y., Kim, M.S., Shin, C.M.: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69(2), 186 (2009)

    Article  Google Scholar 

  22. Jiang, X., Drzal, L.T.: Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 31(6), 1091 (2010)

    Google Scholar 

  23. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  Google Scholar 

  24. LeeBaron, P.C., Wang, Z., Innavaia, T.: Polymer-layered silicate nanocomposites: an overview. App Clay Sci 15, 11 (1999)

    Article  Google Scholar 

  25. Liang, J.: Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials ol. 19(14), (July 2009) 2297-2302, ISSN: 1616-301X

    Google Scholar 

  26. Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grapfting-melt intercalation. Polymer 42, 10013 (2001)

    Article  Google Scholar 

  27. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, g1620 (2008)

    Article  Google Scholar 

  28. Miller, S.G., Bauer, J.I., Maryanski, M.J., Heimann, P.J., Barlow, J.P., Gosau, J.M., Allred, R.E.: Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos. Sci. Technol. 70, 1120 (2010)

    Article  Google Scholar 

  29. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194 (2006)

    Article  Google Scholar 

  30. Mukhopadhyaya, P., Gupta R.K., (2011) Trends and frontiers in Graphene-based polymer nanocomposites. Plast. Eng. 32–42

    Google Scholar 

  31. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720 (2006)

    Article  Google Scholar 

  32. Park, S., An, J., iner, R.D., Jung, I., Yang D., elamakanni, A., Nguyen S.B.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592 (2008)

    Google Scholar 

  33. Pan, Y., Yu, Z., Ou, Y., Hu, G.: A new process of fabricating electrically conducting nylon6/graphite nanocomposites via intercalation polymerisation. J. Polym. Sci., Part B: Polym. Phys. 38, 1626 (2000)

    Article  Google Scholar 

  34. Paul D.R., Robeson L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49 (15), 3187 (2008)

    Google Scholar 

  35. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z–Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884 (2009)

    Google Scholar 

  36. Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z–.Z., Koratkar, N.: Fracture and fatigue in graphene nanocomposites. Small 6(2), 179 (2010)

    Article  Google Scholar 

  37. Ramanthan, T., Stankovich, S., Dikin, D.A., Liu, H., Shen, H., Nguyen, S.T., Brinson, L.C.: Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci., Part B: Polym. Phys. 45(15), 2097 (2007)

    Article  Google Scholar 

  38. Ramanthan, T., Liu, H., Brinson, L.C.: Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci., Part B: Polym. Phys. 43(17), 2269 (2005)

    Article  Google Scholar 

  39. Salavagione, H.J., Gomez, M.A., Martınez, G.: Salavagione, Horacio JPolymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, g6331 (2009)

    Article  Google Scholar 

  40. Shioyama, H.: Polymerization of Isoprene and Styrene in the interlayer spacing of graphite. Carbon 35, 1664 (1997)

    Article  Google Scholar 

  41. Shioyama, H.: The interactions of two chemical species in the interlayer spacing of graphite. Synth. Met. 114(1), 1 (2000)

    Article  Google Scholar 

  42. Sinha, Ray S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539 (2003)

    Article  Google Scholar 

  43. Spitsina, N.G., Lobach, A.S., Kaplunov, M.G.: Polymer/nanocarbon composite materials for photonics. High Energy Chem. 43(7), 552 (2009)

    Article  Google Scholar 

  44. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16 (2), 155 (2006)

    Google Scholar 

  45. Steurer, P., Wissert, R., Thomann, R., Mulhaupt, R.: functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular Rapid Commun 30, 316 (2009)

    Article  Google Scholar 

  46. Sumita, M., Tusukishi, H., Miasaka, K.: Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J. Appl. Polym. Sci. 29(5), 1523 (1984)

    Article  Google Scholar 

  47. Sun, S.T., Cao, Y.W., Feng, J.C., Wu, P.Y.: Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J. Mater. Chem. 20(27), 5605 (2010)

    Article  Google Scholar 

  48. Tien, C.P., Teng, H.: Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J. Power Sources 195(8), 2414 (2010)

    Article  Google Scholar 

  49. Uhl, F.M., Wilkie, C.A.: Polystyrene/graphite nanocomposites: effect on thermal stability’. Polym Degrad Stab 76, 111 (2002)

    Article  Google Scholar 

  50. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., et al.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)

    Article  Google Scholar 

  51. Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299(28), 1361 (2003)

    Article  Google Scholar 

  52. Wang, S., Zhang, Y., Abidi, N., Cabrales, L.: Wettability and surface free energy of graphene films. Langmuir 25 (18), 11078 (2009)

    Google Scholar 

  53. Wei, C.L., Zhang, M.Q., Rang, M.Z., Friedrich, K.: Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62, 1327 (2002)

    Article  Google Scholar 

  54. Worsley, K.A., Ramesh, P., Mandal, S.W., Niyogi, S., Itkis M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride Chem. Phys. Lett. 445, 51 (2007)

    Google Scholar 

  55. Xu, J., Hu, Y., Song, L., et al.: Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40(3), 445 (2002)

    Article  Google Scholar 

  56. Xu, Y.X., Hong, W.J., Bai, H., Li, C., Shi, G.Q.: Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538 (2009)

    Article  Google Scholar 

  57. Yang, S.Y., Lin, W.N., Huang, Y.L., Tien, H.W., Wang, J.Y., Ma, C.C.M., Li, S.M., Wang, Y.S.: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3), 793 (2011)

    Article  Google Scholar 

  58. Yasmin, A., Luo, J–J., Danial, I.M.: Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1179 (2006)

    Google Scholar 

  59. Zhao, Q.Z., Nardelli, M.B., Bernhole, J.: Ultimate strength of carbon nanotubes: a theoretical study. Physical Review B. 65(14), 144105 (2002)

    Article  Google Scholar 

  60. Zhao, X., Zhang, Q.H., Chen, D.J., Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357 (2010)

    Article  Google Scholar 

  61. Zheng, W., Wong, S.: Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 63, 225 (2003)

    Article  Google Scholar 

  62. Zheng, W., Lu, X., Wong, S.: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781 (2004)

    Article  Google Scholar 

  63. Zhen Xu and Chao Gao: In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules 43(16), 6716 (2010)

    Article  Google Scholar 

  64. Zhu, Y., Murali, S., Cai, W. et al.: Graphene and graphene oxide: synthesis, roperties, and applications. Adv. Mater. 22 (35), 3906 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanta Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desai, S., Njuguna, J. (2013). Graphite-Based Nanocomposites to Enhance Mechanical Properties. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_3

Download citation

Publish with us

Policies and ethics