Graphite-Based Nanocomposites to Enhance Mechanical Properties

  • Shanta Desai
  • James Njuguna
Part of the Engineering Materials book series (ENG.MAT.)


Carbon based materials such as diamond and graphite are known to mankind for ages. Graphite is highly anisotropic and the properties of single layer of graphite were known for long. In recent years, nanoscale materials using carbon nanotubes have provided opportunities for researchers to engineer new materials with enhanced properties but graphite-based fillers in the polymer nanocomposites has taken forefront in research of many area upon the discovery of graphene, a single layer of graphite by Andre et al. in 2004 due to its extraordinary properties. Due to high surface energy and low density, it is difficult to disperse graphene in polymeric matrix and hence some of the methods identified to homogenously disperse graphite-based fillers are described here such as solution mixing, melt mixing, in situ polymerization and grafting. Nanocomposites prepared using graphite-based reinforcements to enhance mechanical properties in different polymeric matrix is discussed. Finally, applications and challenges of commercialization of these nanocomposites are presented.


Graphene Oxide Graphene Sheet Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Graphite Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ash, B.J., Stone, J., Rogers, D.F., et al.: Investigation into the thermal and mechanical behavior of PMMA/Alumina Nanocomposites. Mater. Res. Soc. Symp. Proc. 661, 661 (2000)CrossRefGoogle Scholar
  2. 2.
    Bai, H., Xu, Y., Zhao, L., Li, C., Shi, G.: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 13, 1667 (2009)CrossRefGoogle Scholar
  3. 3.
    Bortz, D.R., Heras, E.G., Martin-Gullon, I.: Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45, 238 (2012)CrossRefGoogle Scholar
  4. 4.
    Bourlinos A.B., Gournis D., etridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050 (2003)Google Scholar
  5. 5.
    Chen, G.H., Wu, D.J., Weng, W.G., He, B., Yan, W.L.: Preparation of polystyrene/graphite nanosheets composite. Polymer 42, 4813 (2001)CrossRefGoogle Scholar
  6. 6.
    Chen, G., Weng, W., Wu, D., Wu, C.: PMMA/graphite nanosheets composite and its conducting properties. Eur. Polymer J. 39, 2329 (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, X.M., Shen, J.W., Huang, W.Y.: Novel electrically conductive polypropylene/graphite nanocomposites. J. Mater. Sci. Lett. 21, 213 (2002)CrossRefGoogle Scholar
  8. 8.
    Chung D.D.L.: Review: Exfoliation of graphite. J. Mater. Sci. 22, 4190 (1987)Google Scholar
  9. 9.
    Compton, O.C., Nguyen, S.B.T.: Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 6, 711 (2010)CrossRefGoogle Scholar
  10. 10.
    Das, B., Rasad, K.E., Ramamurty, U., Rao, C.N.R.: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12), 125705 (2009)CrossRefGoogle Scholar
  11. 11.
    Desai, S.: Fabrication and analysis of highly conducting graphite flake composites. PhD Thesis, Institute for Materials Research, University of Leeds, Leeds. United Kingdom (2006)Google Scholar
  12. 12.
    Desai, S., Njuguna, J.: Enhancement of thermal conductivity of materials using different forms of natural graphite Minea A A (ed.) Advances in Industrial Heat Transfer. CRC press 2012, Chapter 6, 201 (2012)Google Scholar
  13. 13.
    Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814 (2009)CrossRefGoogle Scholar
  14. 14.
    Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098 (2009)CrossRefGoogle Scholar
  15. 15.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  16. 16.
    Geng, Y., Wang, S.J., Kim, J.-K.: Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Int. Sci. 336, 592 (2009)CrossRefGoogle Scholar
  17. 17.
    Giannelis, E.P.: Polymer-layered silicate nanocomposites: synthesis, roperties and applications. Appl. Organometalic Chem. 12, 675 (1998)CrossRefGoogle Scholar
  18. 18.
    Gonsalves, K.E., Chen, X., Baraton, M.I.: Mechanistic investigation of the preparation of polymer/ceramic nanocomposites. Nanostruct. Mater. 9, 181 (1997)CrossRefGoogle Scholar
  19. 19.
    Higginbotham, A.L., Lomeda, J.R., Morgan, A.B., Tour, J.M.: Graphite oxide flame-retardant polymer nanocomposites. ACS Appl. Mater. Int. 1(10), 2256 (2009)CrossRefGoogle Scholar
  20. 20.
    Salavagione, H.J., Martínez, G., Ellis, G.: Graphene-based polymer nanocomposites, hysics and applications of Graphene—Experiments, Dr. Mikhailov, S. (ed.), (2011). ISBN: 978-953-307-217-3Google Scholar
  21. 21.
    Jang, J.Y., Kim, M.S., Shin, C.M.: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69(2), 186 (2009)CrossRefGoogle Scholar
  22. 22.
    Jiang, X., Drzal, L.T.: Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 31(6), 1091 (2010)Google Scholar
  23. 23.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)CrossRefGoogle Scholar
  24. 24.
    LeeBaron, P.C., Wang, Z., Innavaia, T.: Polymer-layered silicate nanocomposites: an overview. App Clay Sci 15, 11 (1999)CrossRefGoogle Scholar
  25. 25.
    Liang, J.: Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials ol. 19(14), (July 2009) 2297-2302, ISSN: 1616-301XGoogle Scholar
  26. 26.
    Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grapfting-melt intercalation. Polymer 42, 10013 (2001)CrossRefGoogle Scholar
  27. 27.
    Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, g1620 (2008)CrossRefGoogle Scholar
  28. 28.
    Miller, S.G., Bauer, J.I., Maryanski, M.J., Heimann, P.J., Barlow, J.P., Gosau, J.M., Allred, R.E.: Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos. Sci. Technol. 70, 1120 (2010)CrossRefGoogle Scholar
  29. 29.
    Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194 (2006)CrossRefGoogle Scholar
  30. 30.
    Mukhopadhyaya, P., Gupta R.K., (2011) Trends and frontiers in Graphene-based polymer nanocomposites. Plast. Eng. 32–42Google Scholar
  31. 31.
    Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720 (2006)CrossRefGoogle Scholar
  32. 32.
    Park, S., An, J., iner, R.D., Jung, I., Yang D., elamakanni, A., Nguyen S.B.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592 (2008)Google Scholar
  33. 33.
    Pan, Y., Yu, Z., Ou, Y., Hu, G.: A new process of fabricating electrically conducting nylon6/graphite nanocomposites via intercalation polymerisation. J. Polym. Sci., Part B: Polym. Phys. 38, 1626 (2000)CrossRefGoogle Scholar
  34. 34.
    Paul D.R., Robeson L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49 (15), 3187 (2008)Google Scholar
  35. 35.
    Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z–Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884 (2009)Google Scholar
  36. 36.
    Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z–.Z., Koratkar, N.: Fracture and fatigue in graphene nanocomposites. Small 6(2), 179 (2010)CrossRefGoogle Scholar
  37. 37.
    Ramanthan, T., Stankovich, S., Dikin, D.A., Liu, H., Shen, H., Nguyen, S.T., Brinson, L.C.: Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci., Part B: Polym. Phys. 45(15), 2097 (2007)CrossRefGoogle Scholar
  38. 38.
    Ramanthan, T., Liu, H., Brinson, L.C.: Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci., Part B: Polym. Phys. 43(17), 2269 (2005)CrossRefGoogle Scholar
  39. 39.
    Salavagione, H.J., Gomez, M.A., Martınez, G.: Salavagione, Horacio JPolymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, g6331 (2009)CrossRefGoogle Scholar
  40. 40.
    Shioyama, H.: Polymerization of Isoprene and Styrene in the interlayer spacing of graphite. Carbon 35, 1664 (1997)CrossRefGoogle Scholar
  41. 41.
    Shioyama, H.: The interactions of two chemical species in the interlayer spacing of graphite. Synth. Met. 114(1), 1 (2000)CrossRefGoogle Scholar
  42. 42.
    Sinha, Ray S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539 (2003)CrossRefGoogle Scholar
  43. 43.
    Spitsina, N.G., Lobach, A.S., Kaplunov, M.G.: Polymer/nanocarbon composite materials for photonics. High Energy Chem. 43(7), 552 (2009)CrossRefGoogle Scholar
  44. 44.
    Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16 (2), 155 (2006)Google Scholar
  45. 45.
    Steurer, P., Wissert, R., Thomann, R., Mulhaupt, R.: functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular Rapid Commun 30, 316 (2009)CrossRefGoogle Scholar
  46. 46.
    Sumita, M., Tusukishi, H., Miasaka, K.: Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J. Appl. Polym. Sci. 29(5), 1523 (1984)CrossRefGoogle Scholar
  47. 47.
    Sun, S.T., Cao, Y.W., Feng, J.C., Wu, P.Y.: Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J. Mater. Chem. 20(27), 5605 (2010)CrossRefGoogle Scholar
  48. 48.
    Tien, C.P., Teng, H.: Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J. Power Sources 195(8), 2414 (2010)CrossRefGoogle Scholar
  49. 49.
    Uhl, F.M., Wilkie, C.A.: Polystyrene/graphite nanocomposites: effect on thermal stability’. Polym Degrad Stab 76, 111 (2002)CrossRefGoogle Scholar
  50. 50.
    Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., et al.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRefGoogle Scholar
  51. 51.
    Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299(28), 1361 (2003)CrossRefGoogle Scholar
  52. 52.
    Wang, S., Zhang, Y., Abidi, N., Cabrales, L.: Wettability and surface free energy of graphene films. Langmuir 25 (18), 11078 (2009)Google Scholar
  53. 53.
    Wei, C.L., Zhang, M.Q., Rang, M.Z., Friedrich, K.: Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62, 1327 (2002)CrossRefGoogle Scholar
  54. 54.
    Worsley, K.A., Ramesh, P., Mandal, S.W., Niyogi, S., Itkis M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride Chem. Phys. Lett. 445, 51 (2007)Google Scholar
  55. 55.
    Xu, J., Hu, Y., Song, L., et al.: Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40(3), 445 (2002)CrossRefGoogle Scholar
  56. 56.
    Xu, Y.X., Hong, W.J., Bai, H., Li, C., Shi, G.Q.: Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538 (2009)CrossRefGoogle Scholar
  57. 57.
    Yang, S.Y., Lin, W.N., Huang, Y.L., Tien, H.W., Wang, J.Y., Ma, C.C.M., Li, S.M., Wang, Y.S.: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3), 793 (2011)CrossRefGoogle Scholar
  58. 58.
    Yasmin, A., Luo, J–J., Danial, I.M.: Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1179 (2006)Google Scholar
  59. 59.
    Zhao, Q.Z., Nardelli, M.B., Bernhole, J.: Ultimate strength of carbon nanotubes: a theoretical study. Physical Review B. 65(14), 144105 (2002)CrossRefGoogle Scholar
  60. 60.
    Zhao, X., Zhang, Q.H., Chen, D.J., Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357 (2010)CrossRefGoogle Scholar
  61. 61.
    Zheng, W., Wong, S.: Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 63, 225 (2003)CrossRefGoogle Scholar
  62. 62.
    Zheng, W., Lu, X., Wong, S.: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781 (2004)CrossRefGoogle Scholar
  63. 63.
    Zhen Xu and Chao Gao: In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules 43(16), 6716 (2010)CrossRefGoogle Scholar
  64. 64.
    Zhu, Y., Murali, S., Cai, W. et al.: Graphene and graphene oxide: synthesis, roperties, and applications. Adv. Mater. 22 (35), 3906 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Composites Evolution LtdChesterfieldEngland
  2. 2.Institute for Innovation, Design & SustainabilityRobert Gordon UniversityAberdeenUK

Personalised recommendations