Skip to main content

Intrinsic Joint Compliance

  • Chapter
Towards Safe Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 90))

  • 2080 Accesses

Abstract

Human-friendly robots are usually characterized either by active compliance control or intrinsically compliant behavior. Active compliance control has already reached a mature stage and recently went to market. Intrinsic compliance on the other hand is currently investigated in several large European projects and other research projects worldwide. Due to the significant increase in mechanical design complexity, the additional degrees of freedom needed for adjusting stiffness and related questions regarding control, there are still several open issues to be addressed in order to validate the VIA concept. DLR is currently developing an integrated hand-arm system [1, 13], which will be fully equipped with variable stiffness actuation, see Fig. 10.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., Wolf, S., Hirzinger, G.: Soft robotics: From torque feedback controlled lightweight robots to intrinsically compliant systems. IEEE Robotics and Automation Mag.: Special Issue on Adaptable Compliance/Variable Stiffness for Robotic Applications 15(3), 20–30 (2008)

    Article  Google Scholar 

  2. Albu-Schäffer, A., Wolf, S., Eiberger, O., Haddadin, S., Petit, F., Chalon, M.: Dynamic modeling and control of variable stiffness actuators. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2010), Anchorage, Alaska, pp. 2155–2162 (2010)

    Google Scholar 

  3. Benson, D.: A gauss pseudospectral transcription for optimal control (2005)

    Google Scholar 

  4. Bicchi, A., Tonietti, G.: Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control. IEEE Robotics and Automation Mag. 11, 22–33 (2004)

    Article  Google Scholar 

  5. Bryson, A., Ho, Y.: Applied optimal control, rev. print. edn. Hemisphere Publ. Corp. (1975)

    Google Scholar 

  6. Bulirsch, R., Stoer, J.: Einführung in die numerische Mathematik 2. Springer (1978) (German)

    Google Scholar 

  7. Carl-Cranz-Gesellschaft: Optimierungsverfahren- Software und praktische Anwendungen (1981) (German)

    Google Scholar 

  8. Chou, C., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation (12), 90–102 (1996)

    Google Scholar 

  9. De Luca, A., Albu-Schäffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2006), Beijing, China, pp. 1623–1630 (2006)

    Google Scholar 

  10. Gao, D., Wampler, C.: On the use of the head injury criterion (HIC) to assess the danger of robot impacts. IEEE Robotics and Automation Mag. 16(4), 71–74 (2009)

    Article  Google Scholar 

  11. Edsinger, A.: Robot manipulation in human environments. Ph.D. thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2007)

    Google Scholar 

  12. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grebenstein, M., van der Smagt, P.: Antagonism for a highly anthropomorphic hand-arm system. Advanded Robotics 22(1), 39–55 (2008)

    Article  Google Scholar 

  14. Haddadin, S.: Evaluation criteria and control structures for safe human-robot interaction. Master’s thesis, Technical University of Munich (TUM) & German Aerospace Center (DLR) (2005)

    Google Scholar 

  15. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safe physical human-robot interaction: Measurements, analysis & new insights. In: International Symposium on Robotics Research (ISRR 2007), Hiroshima, Japan, pp. 395–408 (2007)

    Google Scholar 

  16. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safety evaluation of physical human-robot interaction via crash-testing. In: Robotics: Science and Systems Conference (RSS 2007), Atlanta, USA, pp. 217–224 (2007)

    Google Scholar 

  17. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: Measurements, analysis & new insights. The Int. J. of Robotics Research 28(11-12), 1507–1527 (2009)

    Article  Google Scholar 

  18. Haddadin, S., Albu-Schäffer, A., Luca, A.D., Hirzinger, G.: Collision detection & reaction: A contribution to safe physical human-robot interaction. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2008), Nice, France, pp. 3356–3363 (2008)

    Google Scholar 

  19. Haddadin, S., Laue, T., Frese, U., Wolf, S., Albu-Schäffer, A., Hirzinger, G.: Kick it like a safe robot: Requirements for 2050. Robotics and Autonomous Systems 57, 761–775 (2009)

    Article  Google Scholar 

  20. Haddadin, S., Weis, M., Albu-Schaeffer, A., Wolf, S.: Optimal control for maximizing link velocity of robotic variable stiffness joints. In: Proceedings of IFAC 2011,World Congress, pp. 3175–3182 (2011)

    Google Scholar 

  21. Hermann, M.: Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme. Oldenbourg, Müchen (2004) (German)

    Google Scholar 

  22. Hurst, J., Chestnutt, J., Rizzi, A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2004), Barcelona, Spain, pp. 4662–4667 (2004)

    Google Scholar 

  23. Kirk, D.: Optimal control theory. Prentice-Hall (1970)

    Google Scholar 

  24. Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the nealder-mead simplex method in low dimensions. SIAM Journal on Optimisation 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press (2011), http://books.google.de/books?id=bXBJYgEACAAJ

  26. Migliore, S., Brown, E., DeWeerth, S.: Biologically inspired joint stiffness control. In: IEEE Int. Conf. on Robotics and Automation (ICRA2005), Barcelona, Spain (2005)

    Google Scholar 

  27. Morita, T., Sugano, S.: Development of one-dof robot arm equipped with mechanical impedance adjuster. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2006), Washington, DC, USA, p. 407 (1995)

    Google Scholar 

  28. Oberer, S., Schraft, R.D.: Robot-dummy crash tests for robot safety assessment. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2007), Rome, Italy, pp. 2934–2939 (2007)

    Google Scholar 

  29. Oberle, H.: BNDSCO - A Program for the Numerical Solution of Optimal Control Problems (2001), Hamburger Beiträge zur angewandten Mathematik, Bericht 36, Reihe B (German)

    Google Scholar 

  30. Papageorgiou, M.: Optimierung : statische, dynamische, stochastische Verfahren für die Anwendung, 2. erw. u. verb. aufl. edn. Oldenbourg (1996) (German)

    Google Scholar 

  31. Park, J.J., Kim, H.S., Song, J.B.: Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2009), Kobe, Japan, pp. 3371–3376 (2009)

    Google Scholar 

  32. Pontrjagin, L.: Mathematische Theorie optimaler Prozesse, 2., verb. aufl. edn. Oldenbourg, München (1967) (German)

    Google Scholar 

  33. Pratt, G., Williamson, M.: Series elastics actuators. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 1995 (IROS 1995), Victoria, Canada, pp. 399–406 (1995)

    Google Scholar 

  34. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. 37, 22:1–22:39 (2010), http://doi.acm.org/10.1145/1731022.1731032

  35. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2008), Pasadena, USA, pp. 2171–2176 (2008)

    Google Scholar 

  36. Unbehauen, H.: Regelungstechnik III, Identifikation, Adaption, Optimierung, 6., durchges. Aufl. edn. Oldenbourg (1989) (German)

    Google Scholar 

  37. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems 55, 761–768 (2007)

    Article  Google Scholar 

  38. Wolf, S., Hirzinger, G.: A new variable stiffness design: Matching requirements of the next robot generation. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2008), Pasadena, USA, pp. 1741–1746 (2008)

    Google Scholar 

  39. Zinn, M., Khatib, O., Roth, B.: A new actuation approach for human friendly robot design. The Int. J. of Robotics Research 23, 379–398 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Haddadin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haddadin, S. (2014). Intrinsic Joint Compliance. In: Towards Safe Robots. Springer Tracts in Advanced Robotics, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40308-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40308-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40307-1

  • Online ISBN: 978-3-642-40308-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics