Skip to main content

Neovascular Age-Related Macular Degeneration

  • Chapter
  • First Online:
Book cover Microperimetry and Multimodal Retinal Imaging

Abstract

Age-related macular degeneration (AMD) progresses through early and intermediate to advanced stages, one of which is neovascular AMD (nAMD). A correct diagnosis of nAMD at an early stage is critical because unlike geographic atrophy, it can be treated with therapeutic agents. Diagnosis is made easier by a variety of imaging modalities that complement clinical examination. Microperimetry in conjunction with best-corrected visual acuity testing allows changes in morphology to be correlated with visual function in a single examination, while morphology itself can be monitored with multimodal imaging devices in addition to fundoscopy. Today’s gold standard two-dimensional fluorescein angiography, which evaluates both leakage and morphology, makes it possible to detect a choroidal neovascular lesion in its formative stage. Other two-dimensional en face examinations such as color fundus photography, fundus autofluorescence, red free imaging, and near-infrared imaging, including indocyanine green angiography both in normal and wide-field mode, each adds specific details about morphologic alterations. Three-dimensional spectral domain optical coherence tomography allows a precise and near-histologic evaluation of the retina in its entire depth extending from the internal limiting membrane to the retinal pigment epithelium. Depending on the morphology and device settings, it can even visualize structures below the retinal pigment epithelium like the choroid. A fourth dimension can be added by measuring, for example, the change in polarization state of the reflected light. All these imaging techniques and the detailed information for diagnosing nAMD that clinicians can gain from each of them are covered in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frampton J (2013) Ranibizumab: a review of its use in the treatment of neovascular age-related macular degeneration. Drugs Aging 30:331–358

    Article  CAS  PubMed  Google Scholar 

  2. Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177

    Article  PubMed  Google Scholar 

  3. Freund KB, Zweifel SA, Engelbert M (2010) Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina 30:1333–1349

    Article  PubMed  Google Scholar 

  4. Blatter C, Klein T, Grajciar B et al (2012) Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt 17:070505–070501

    PubMed  Google Scholar 

  5. Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30(6):431–451

    Article  PubMed Central  PubMed  Google Scholar 

  6. Felberer F, Kroisamer J-S, Hitzenberger CK et al (2012) Lens based adaptive optics scanning laser ophthalmoscope. Opt Express 20:17297–17310

    Article  PubMed  Google Scholar 

  7. Liu JJ, Grulkowski I, Kraus MF et al (2013) In vivo imaging of the rodent eye with swept source/Fourier domain OCT. Biomed Opt Express 4:351–363

    Article  PubMed Central  PubMed  Google Scholar 

  8. Torzicky T, Marschall S, Pircher M et al (2013) Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser. J Biomed Opt 18:026008–026008

    Article  Google Scholar 

  9. Torzicky T, Pircher M, Zotter S et al (2012) High-speed retinal imaging with polarization-sensitive OCT at 1040 nm. Optom Vis Sci 89:585–592, 510.1097/OPX.1090b1013e31825039be

    Article  PubMed  Google Scholar 

  10. Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 117:1177–1189.e1174

    Article  PubMed  Google Scholar 

  11. Zayit-Soudry S, Moroz I, Loewenstein A (2007) Retinal pigment epithelial detachment. Surv Ophthalmol 52:227–243

    Article  PubMed  Google Scholar 

  12. Bolz M, Simader C, Ritter M et al (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration. Br J Ophthalmol 94:185–189

    Article  CAS  PubMed  Google Scholar 

  13. Ahlers C, Golbaz I, Einwallner E et al (2009) Identification of optical density ratios in subretinal fluid as a clinically relevant biomarker in exudative macular disease. Invest Ophthalmol Vis Sci 50:3417–3424

    Article  PubMed  Google Scholar 

  14. Golbaz I, Ahlers C, Stock G et al (2011) Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy. Invest Ophthalmol Vis Sci 52:1599–1605

    Article  CAS  PubMed  Google Scholar 

  15. Giani A, Luiselli C, Esmaili DD et al (2011) Spectral-domain optical coherence tomography as an indicator of fluorescein angiography leakage from choroidal neovascularization. Invest Ophthalmol Vis Sci 52(8):5579–5586

    Article  PubMed  Google Scholar 

  16. Mayr-Sponer U, Waldstein S, Kundi M et al (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology. pii: S0161-6420(13)00489-2. doi:10.1016/j.ophtha.2013.05.032

  17. Waldstein S, Mayr-Sponer U, Ritter M et al (2013) Impact of the vitreous configuration on the efficacy of quarterly, pro-re-nata and monthly treatment in multicenter trials evaluating ranibizumab for neovascular age-related macular degeneration, ARVO Abstract 3818. In: ARVO annual meeting 2013, Seattle

    Google Scholar 

  18. Shin HJ, Chung H, Kim HC (2011) Association between foveal microstructure and visual outcome in age-related macular degeneration. Retina 31:1627–1636, 1610.1097/IAE.1620b1013e31820d31823d31801

    Article  PubMed  Google Scholar 

  19. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619, 1610.1097/IAE.1600b1013e3182247535

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bolz M, Schmidt-Erfurth U, Deak G et al (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920

    Article  PubMed  Google Scholar 

  21. Lammer J, Bolz M, Baumann B et al Detection and analysis of hard exudates by polarization sensitive optical coherence tomography in patients with diabetic maculopathy (unpublished data)

    Google Scholar 

  22. Lim LS, Mitchell P, Seddon JM et al (2012) Age-related macular degeneration. Lancet 379:1728–1738

    Article  PubMed  Google Scholar 

  23. American Academy of Ophthalmology (2012) Age-related macular degeneration and other causes of choroidal neovascularization. In: Basic and clinical science course, section 12: Retina and vitreous, part II, chapter 4, subchapter: Neovascular AMD. American Academy of Ophthalmology, San Francisco, pp 63–70

    Google Scholar 

  24. Ying G-S, Huang J, Maguire MG et al (2013) Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. Ophthalmology 120:122–129

    Article  PubMed  Google Scholar 

  25. Koh AHC, Chen L-J, Chen S-J et al (2013) Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina 33:686–716, 610.1097/IAE.1090b1013e3182852446

    Article  PubMed  Google Scholar 

  26. Cachulo L, Silva R, Fonseca P et al (2011) Early markers of choroidal neovascularization in the fellow eye of patients with unilateral exudative age-related macular degeneration. Ophthalmologica 225:144–149

    Article  PubMed  Google Scholar 

  27. Torzicky T, Pircher M, Zotter S et al (2012) Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography. Opt Express 20:7564–7574

    Article  PubMed  Google Scholar 

  28. Adhi M, Duker JS (2013) Optical coherence tomography-current and future applications. Curr Opin Ophthalmol 24:213–221

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tan CS, Heussen F, Sadda SR (2013) Peripheral autofluorescence and clinical findings in neovascular and non-neovascular age-related macular degeneration. Ophthalmology 120(6):1271–1277

    Article  PubMed  Google Scholar 

  30. Pircher M, Zotter S, Roberts P et al (2012) Imaging of retinal lesions in age related macular degeneration using wide field polarization sensitive optical coherence tomography. In: Biomedical Optics, Biomed Poster Session II (BTu3A), Optical Society of America, Miami, 28 Apr – 2 May 2012, p BTu3A.71. doi:10.1364/BIOMED.2012.BTu3A.71

  31. Kellner U, Kellner S, Weinitz S (2010) Fundus autofluorescence (488 nm) and near-infrared autofluorescence (787 nm) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Retina 30:6–15. doi:10.1097/IAE.1090b1013e3181b8348b

    Article  PubMed  Google Scholar 

  32. Von Rückmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 38:478–486

    Google Scholar 

  33. Semoun O, Guigui B, Tick S et al (2009) Infrared features of classic choroidal neovascularisation in exudative age-related macular degeneration. Br J Ophthalmol 93:182–185

    Article  CAS  PubMed  Google Scholar 

  34. Bastian N, Fonseca S, Clemens CR et al (2013) Prädiktive Nahinfrarot-SLO-Merkmale für Risse des retinalen Pigmentepithels bei altersabhängiger Makuladegeneration. Klin Monatsbl Augenheilkd 230:270–274

    Article  CAS  PubMed  Google Scholar 

  35. Theelen T, Berendschot TJM, Hoyng C et al (2009) Near-infrared reflectance imaging of neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 247:1625–1633

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mukkamala SK, Costa RA, Fung A, Sarraf D, Gallego-Pinazo R, Freund KB (2012) Optical coherence tomographic imaging of sub-retinal pigment epithelium lipid. Arch Ophthalmol 130:1547–1553

    Article  PubMed  Google Scholar 

  37. Schmidt-Erfurth UM, Richard G, Augustin A et al (2007) Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmol Scand 85:486–494

    Article  CAS  PubMed  Google Scholar 

  38. Heier JS, Brown DM, Chong V et al (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119:2537–2548

    Article  PubMed  Google Scholar 

  39. Charbel Issa P, Troeger E, Finger R et al (2010) Structure-function correlation of the human central retina. PLoS One 5:e12864

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sulzbacher F, Kiss C, Kaider A et al (2012) Correlation of SD-OCT features and retinal sensitivity in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53:6448–6455

    Article  PubMed  Google Scholar 

  41. Sulzbacher F, Kiss C, Kaider A et al (2013) Correlation of OCT characteristics and retinal sensitivity in neovascular age-related macular degeneration in the course of monthly ranibizumab treatment. Invest Ophthalmol Vis Sci 54:1310–1315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Schmidt-Erfurth MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerendas, B.S., Kroisamer, J.S., Sulzbacher, F., Schmidt-Erfurth, U. (2014). Neovascular Age-Related Macular Degeneration. In: Midena, E. (eds) Microperimetry and Multimodal Retinal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40300-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40300-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40299-9

  • Online ISBN: 978-3-642-40300-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics