Skip to main content

Early and Intermediate Age-Related Macular Degeneration

  • Chapter
  • First Online:
Microperimetry and Multimodal Retinal Imaging

Abstract

Morphological changes in early and intermediate stages of age-related macular degeneration (AMD), including drusen and pigmentary abnormalities, can nowadays be visualized by a variety of imaging modalities. Findings from optical coherence tomography (OCT) in particular play an important role in the diagnosis and follow-up of patients with AMD. However, color fundus photography (CF), fundus autofluorescence (FAF), near-infrared reflectance (NIR), near-infrared autofluorescence (NIA), fluorescein angiography (FA), and indocyanine green angiography (ICGA) are often needed to complete the information acquired with OCT. Although best-corrected visual acuity (BCVA) is still of major value in monitoring the macular function of patients with AMD, it only measures a single aspect of visual function. Additional microperimetric examinations can help to investigate patient’s comprehensive “quality of vision.” This chapter focuses on the abnormalities seen with different imaging modalities and structure-function correlations and also provides a definition of AMD and a short introduction to the therapeutic options for early and intermediate AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vision 2020: right to sight. Blindness and visual impairment: global facts. http://www.iapb.org/vision-2020. Accessed Mar 2013

  2. Rudnicka AR, Jarrar Z, Wormald R et al (2012) Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: a meta-analysis. Ophthalmology 119:571–580

    Article  PubMed  Google Scholar 

  3. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851

    Article  PubMed  Google Scholar 

  4. Holliday EG, Smith AV, Cornes BK et al (2013) Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis. PLoS One 8(1):e53830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schmidt-Erfurth U, Pollreisz A, Mitsch C, Bolz M (2010) Antivascular endothelial growth factors in age-related macular degeneration. Dev Ophthalmol 46:21–38

    Article  CAS  PubMed  Google Scholar 

  6. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Article  PubMed Central  Google Scholar 

  7. Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH (2007) Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis. BMJ 335:755

    Article  PubMed Central  PubMed  Google Scholar 

  8. Evans JR, Lawrenson JG (2012) Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev (11):CD000254

    Google Scholar 

  9. Klein EA, Thompson IM Jr, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–1556

    Article  CAS  PubMed  Google Scholar 

  10. Ho L, van Leeuwen R, Witteman JC et al (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam study. Arch Ophthalmol 129:758–766

    Article  CAS  PubMed  Google Scholar 

  11. Kaya S, Weigert G, Pemp B, Sacu S et al (2012) Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects – a study using spectral fundus reflectance. Acta Ophthalmol 90:e399–e403

    Article  PubMed  Google Scholar 

  12. Ma L, Yan SF, Huang YM et al (2012) Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 119:2290–2297

    Article  PubMed  Google Scholar 

  13. Chew EY, Clemons T, SanGiovanni JP et al (2012) The Age-Related Eye Disease Study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology 119:2282–2289

    Article  PubMed Central  PubMed  Google Scholar 

  14. Christen WG, Glynn RJ, Ajani UA et al (2001) Age-related maculopathy in a randomized trial of low-dose aspirin among US physicians. Arch Ophthalmol 119:1143–1149

    Article  CAS  PubMed  Google Scholar 

  15. Fong DS, Contreras R (2010) Recent statin use and 1-year incidence of exudative age-related macular degeneration. Am J Ophthalmol 149:955–958.e1

    Article  CAS  PubMed  Google Scholar 

  16. McGwin G Jr, Xie A, Owsley C (2005) The use of cholesterol-lowering medications and age-related macular degeneration. Ophthalmology 112:488–494

    Article  PubMed  Google Scholar 

  17. Miller JW (2013) Age-related macular degeneration revisited – piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 155:1–35.e13

    Article  PubMed  Google Scholar 

  18. Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177

    Article  PubMed  Google Scholar 

  19. Keane PA, Patel PJ, Liakopoulos S et al (2012) Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol 57:389–414

    Article  PubMed  Google Scholar 

  20. Gregori G, Wang F, Rosenfeld PJ et al (2011) Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration. Ophthalmology 118:1373–1379

    PubMed Central  PubMed  Google Scholar 

  21. Schlanitz FG, Ahlers C, Sacu S et al (2010) Performance of drusen detection by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 51:6715–6721

    Article  PubMed  Google Scholar 

  22. Yehoshua Z, Wang F, Rosenfeld PJ et al (2011) Natural history of drusen morphology in age-related macular degeneration using spectral domain optical coherence tomography. Ophthalmology 118:2434–2441

    Article  PubMed Central  PubMed  Google Scholar 

  23. Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–1454

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sayegh RG, Simader C, Scheschy U et al (2011) A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology 118:1844–1851

    Article  PubMed  Google Scholar 

  25. Forte R, Querques G, Querques L et al (2012) Multimodal imaging of dry age-related macular degeneration. Acta Ophthalmol 90(4):e281–e287

    Article  PubMed  Google Scholar 

  26. Piermarocchi S, Sartore M, Bandello F et al (2006) Quality of vision: a consensus building initiative for a new ophthalmologic concept. Eur J Ophthalmol 16:851–860

    CAS  PubMed  Google Scholar 

  27. Hartmann KI, Bartsch DU, Cheng L et al (2011) Scanning laser ophthalmoscope imaging stabilized microperimetry in dry age-related macular degeneration. Retina 31:1323–1331

    Article  PubMed  Google Scholar 

  28. Iwama D, Tsujikawa A, Ojima Y et al (2010) Relationship between retinal sensitivity and morphologic changes in eyes with confluent soft drusen. Clin Experiment Ophthalmol 38:483–488

    Article  PubMed  Google Scholar 

  29. Midena E, Vujosevic S, Convento E et al (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:1499–1503

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dinc UA, Yenerel M, Gorgun E et al (2008) Assessment of macular function by microperimetry in intermediate age-related macular degeneration. Eur J Ophthalmol 18:595–600

    CAS  PubMed  Google Scholar 

  31. Christenbury JG, Folgar FA, O’Connell RV et al (2013) Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 120:1038–1045

    Article  PubMed  Google Scholar 

  32. Simader C, Michels S, Geitzenauer W et al (2005) Functional macular mapping in patients with progression from dry to neovascular AMD. Paper presented at the SOE

    Google Scholar 

  33. Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30:431–451

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schlanitz F, Bolz M, Baumann B et al (2012) Drusentypen und ihr Einfluss auf das retinale Pigmentepithel – In-vivo-Evaluation mit Hilfe der Polarisationssensitiven OCT. Paper presented at the DOG

    Google Scholar 

  35. Schlanitz FG, Baumann B, Spalek T et al (2011) Performance of automated drusen detection by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 5:4571–4579

    Article  Google Scholar 

  36. Dubra A, Sulai Y, Norris JL et al (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2:1864–1876

    Article  PubMed Central  PubMed  Google Scholar 

  37. Felberer F, Kroisamer JS, Hitzenberger CK et al (2012) Lens based adaptive optics scanning laser ophthalmoscope. Opt Express 20:17297–17310

    Article  PubMed  Google Scholar 

  38. Jonnal RS, Besecker JR, Derby JC et al (2010) Imaging outer segment renewal in living human cone photoreceptors. Opt Express 18:5257–5270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pircher M, Kroisamer JS, Felberer F et al (2010) Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT. Biomed Opt Express 2:100–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kroisamer JS, Felberer F, Hitzenberger CK et al (2012) Evaluation of an adaptive optics SLO in patients with AMD. Paper presented at the ARVO

    Google Scholar 

  41. Boretsky A, Khan F, Burnett G et al (2012) In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: A pilot study. Lasers Surg Med 44:603–610

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Schmidt-Erfurth MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kroisamer, JS., Gerendas, B.S., Schmidt-Erfurth, U. (2014). Early and Intermediate Age-Related Macular Degeneration. In: Midena, E. (eds) Microperimetry and Multimodal Retinal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40300-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40300-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40299-9

  • Online ISBN: 978-3-642-40300-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics