Skip to main content

Scotopic Microperimetry

  • Chapter
  • First Online:
Microperimetry and Multimodal Retinal Imaging

Abstract

Patients affected by macular diseases usually complain impaired vision in dim light and difficulties in recognizing the contour of objects in low-contrast conditions even with normal visual acuity and full visual field. Unfortunately, despite the evidence that rods fail first, clinicians and regulatory agencies monitor the progression of macular degeneration with visual tests that measure cone but not rod function. This is typically performed in bright light, but not in dim light condition where patients struggle to perform ordinary visual tasks.

This chapter describes the contribution of newly developed scotopic microperimetry to the clinical examination of rod function, mainly in diabetics without and with early nonproliferative diabetic retinopathy and in patients with early age-related macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinmetz RL, Haimovici R, Jubb C et al (1993) Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change. Br J Ophthalmol 77:549–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Owsley C, Jackson GR, White M et al (2001) Delay in rod-mediated dark adaptation in early age-related maculopathy. Ophthalmology 108:1196–1202

    Article  CAS  PubMed  Google Scholar 

  3. Haimovici R, Owens SL, Fitzke FW, Bird AC (2002) Dark adaptation in age-related macular degeneration: relationship to the fellow eye. Graefes Arch Clin Exp Ophthalmol 240:90–95

    Article  PubMed  Google Scholar 

  4. Lorenz B, Gyurus P, Preising M et al (2000) Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 41:2735–2742

    CAS  PubMed  Google Scholar 

  5. Cella W, Greenstein VC, Zemant-Rajang J et al (2009) G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res 89(1):16–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arden GB, Carter RM, Hogg CR et al (1983) Rod and cone activity in patients with dominantly inherited retinitis pigmentosa: comparisons between psychophysical and electroretinographic measurements. Br J Ophthalmol 67:405–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Schmitz-Valckenber S, Ong EE, Rubin GS et al (2009) Structural and functional changes over time in MacTel patients. Retina 29:1314–1320

    Article  Google Scholar 

  8. Umino Y, Solessio E (2013) Loss of scotopic contrast sensitivity in the optomotor response of diabetic mice. Invest Ophthalmol Vis Sci 54:1536–1543

    Article  PubMed  Google Scholar 

  9. Owsley C, McGwin G, Jackson GR, Kallies K, Clark M (2007) Cone- and rod-mediated dark adaptation impairment in age-related maculopathy. Am J Ophthalmol 114:1728–1735

    Google Scholar 

  10. Curcio C, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  11. Medeiros NE, Curcio C (2001) Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:795–803

    CAS  PubMed  Google Scholar 

  12. Curcio CA, Owsley C, Jackson GR (2000) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41:2015–2018

    CAS  PubMed  Google Scholar 

  13. Marmor MF, Aguirre G, Arden G et al (1983) Retinitis pigmentosa; a symposium on terminology and methods of examination. Ophthalmology 90:126–131

    Article  Google Scholar 

  14. Jacobson SG, Voigt WJ, Parel JM et al (1986) Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 93:1604–1611

    Article  CAS  PubMed  Google Scholar 

  15. Chen JC, Firzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Invest Ophthalmol Vis Sci 33:334–340

    CAS  PubMed  Google Scholar 

  16. Scholl HPN, Bellmann C, Dandekar SS, Bird AC, Fitzke FW (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related maculopathy. Invest Ophthalmol Vis Sci 45:574–583

    Article  PubMed  Google Scholar 

  17. Pilotto E, Midena E (2007) Scanning laser microperimetry. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack Incorporated, Thorofare, pp 7–12

    Google Scholar 

  18. Midena E, Radin PP, Convento E (2007) Liquid crystal display microperimetry. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack Incorporated, Thorofare, pp 15–25

    Google Scholar 

  19. Bellmann C, Feely M, Crossland MD, Kabanarou SA, Rubin GS (2004) Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. Ophthalmology 111:2265–2270

    Article  PubMed  Google Scholar 

  20. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  CAS  PubMed  Google Scholar 

  21. Crossland MD, Luong VA, Rubin GS, Fitzke FW (2011) Retinal specific measurement of dark-adapted visual function: validation of a modified microperimeter. BMC Ophthalmol 11:5

    Article  PubMed Central  PubMed  Google Scholar 

  22. Van de Born LI, van Schooneveld MJ, de Jong LA et al (1994) Thr4Lys rhodopsin mutation is associated with autosomal dominant retinitis pigmentosa of the cone-rod type in a small Dutch family. Ophthalmic Genet 15:51–60

    Article  PubMed  Google Scholar 

  23. Midena E, Convento E, Casciano M et al (2012) Scotopic microperimetry in diabetes. Invest Ophthalmol Vis Sci 53:E-Abstract 2864

    Google Scholar 

  24. Chen C, Wu L, Wu D et al (2004) The local cone and rod system function in early age-related macular degeneration. Doc Ophthalmol 10:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Pilotto MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilotto, E., Convento, E. (2014). Scotopic Microperimetry. In: Midena, E. (eds) Microperimetry and Multimodal Retinal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40300-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40300-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40299-9

  • Online ISBN: 978-3-642-40300-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics