Advertisement

BioDI: A New Approach to Improve Biomedical Documents Indexing

  • Wiem Chebil
  • Lina Fatima Soualmia
  • Stéfan Jacques Darmoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

The partial match between biomedical documents and controlled vocabularies allows to find in the documents more terms variants than those existing in the dictionaries. However, it generates irrelevant information. We propose a new approach for indexing biomedical documents with the Medical Subject Headings (MeSH) thesaurus that aims to overcome the limitation of the partial match. In fact, our indexing approach proposes to restrict the stemming process in the step of pretreatment. The step of the descriptors extraction is based essentially on the vector space model and combines semantic and statistic methods to compute a score to estimate the relevance of a descriptor given a document. The knowledge provided by the Unified Medical Language System (UMLS) is used then for filtering. The filtering method aims to keep only relevant descriptors. The experiments of our approach that have been carried out on the OHSUMED collection, showed very encouraging results.

Keywords

Partial match biomedical documents stemming MeSH term term weight UMLS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Happe, A., Pouliquen, B., Burgun, A., Cuggia, M., Beux, P.L.: Automatic concept extraction from spoken medical reports. I. J. Medical Informatics 70(2-3), 255–263 (2003)CrossRefGoogle Scholar
  2. 2.
    Jonquet, C., LePendu, P., Falconer, S.M., Coulet, A., Noy, N.F., Musen, M.A., Shah, N.H.: NCBO Resource Index: Ontology-based search and mining of biomedical resources. J. Web Sem. 9(3), 316–324 (2011)CrossRefGoogle Scholar
  3. 3.
    Mukherjea, et al.: Enhancing a biomedical information extraction system with dictionary mining and context Disambiguation. IBM Journal of Research and Development 48(5/6), 693–701 (2004)CrossRefGoogle Scholar
  4. 4.
    Zhou, X., Zhang, X., Hu, X.: MaxMatcher: Biological concept extraction using approximate dictionary lookup. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 1145–1149. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ruch, P.: Automatic assignment of biomedical categories: toward a generic approach. Bioinform. J. 22(6), 658–664 (2006)CrossRefGoogle Scholar
  6. 6.
    Aronson, A.R., Mork, J.G., Gay, C.W., Humphrey, S.M., Rogers, W.J.: The NLM indexing initiative’s medical text indexer. Med. Health Info. 11(1), 268–272 (2004)Google Scholar
  7. 7.
    Majdoubi, J., Tmar, M., Gargouri, F.: Using the MeSH thesaurus to index a medical article: combination of content, structure and semantics. In: International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, KES, vol. (1), pp. 277–284 (2009)Google Scholar
  8. 8.
    Nelson, S.J., Johnson, W.D., Humphreys, B.L.: Relationships in Medical Subject Heading. In: Relationships in the Organization of Knowledge, pp. 171–184. Kluwer Academic Publishers (2001)Google Scholar
  9. 9.
    Trieschnigg, D., Pezik, P., Lee, V., et al.: MeSH Up: effective MeSH text classification for improved document retrieval. Bioinformatics 25(11), 1412–1418 (2009)CrossRefGoogle Scholar
  10. 10.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32(4), 267–270 (2004)CrossRefGoogle Scholar
  11. 11.
    Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)Google Scholar
  12. 12.
    Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1981)CrossRefGoogle Scholar
  13. 13.
    Couto, F.M., Silva, M.J., Coutinho: Finding genomic ontology terms in text using evidence content. BMC Bioinformatic 6, (S-1) (2005)Google Scholar
  14. 14.
    Chebil, W., Soualmia, L.F., Dahamna, B., Darmoni, S.J.: Automatic indexing of health documents in French: Evaluating and analysing errors. IRBM BioMedical Engineering and Research 33(2), 129–136 (2012)Google Scholar
  15. 15.
    Manning, C.D., Schütze, H.: Fondations of statistical natural language processing, pp. 534–536. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Dinh, D., Tamine, L.: Towards a context sensitive approach to searching information based on domain specific knowledge sources. Web Semantics: Science, Services and Agents on the World Wide Web 12-13, 41–52 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wiem Chebil
    • 1
    • 2
  • Lina Fatima Soualmia
    • 1
  • Stéfan Jacques Darmoni
    • 1
  1. 1.Normandie Univ, CISMeF Team, LITIS-TIBS EA 4108Rouen University and HospitalFrance
  2. 2.Research Unit MARSMonastir UniversityTunisia

Personalised recommendations