Skip to main content

Fast Community Detection

  • Conference paper
Database and Expert Systems Applications (DEXA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8055))

Included in the following conference series:

Abstract

We propose an algorithm for the detection of communities in networks. The algorithm exploits degree and clustering coefficient of vertices as these metrics characterize dense connections, which, we hypothesize, are indicative of communities. Each vertex, independently, seeks the community to which it belongs by visiting its neighbour vertices and choosing its peers on the basis of their degrees and clustering coefficients. The algorithm is intrinsically data parallel. We devise a version for Graphics Processing Unit (GPU). We empirically evaluate the performance of our method. We measure and compare its efficiency and effectiveness to several state of the art community detection algorithms. Effectiveness is quantified by five metrics, namely, modularity, conductance, internal density, cut ratio and weighted community clustering. Efficiency is measured by the running time. Clearly the opportunity to parallelize our algorithm yields an efficient solution to the community detection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761 (2010)

    Article  Google Scholar 

  2. Baumes, J., Goldberg, M.K., Krishnamoorthy, M.S., Magdon-Ismail, M., Preston, N.: Finding communities by clustering a graph into overlapping subgraphs. In: IADIS AC, pp. 97–104 (2005)

    Google Scholar 

  3. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132 (2005)

    Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Google Scholar 

  6. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery method for overlapping communities. CoRR (2012)

    Google Scholar 

  7. CUDA-Zone, http://www.nvidia.com/object/what_is_cuda_new.html

  8. Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68 (2003)

    Google Scholar 

  9. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, WebKDD/SNA-KDD 2007, pp. 16–25. ACM (2007)

    Google Scholar 

  10. Email-URV, http://deim.urv.cat/~aarenas/data/welcome.htm

  11. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis: invited presentation, extended abstract. In: VALUETOOLS 2009. ICST, Brussels (2009)

    Google Scholar 

  12. Gergely Palla, I.F., Derenyi, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  13. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldberg, M.K., Kelley, S., Magdon-Ismail, M., Mertsalov, K., Wallace, A.: Finding overlapping communities in social networks. In: SocialCom/PASSAT, pp. 104–113 (2010)

    Google Scholar 

  15. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Gregory, S.: A fast algorithm to find overlapping communities in networks. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 408–423. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, p. 18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., Liu, J.: A Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment (2011)

    Google Scholar 

  19. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11 (2009)

    Google Scholar 

  20. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(4) (2008)

    Google Scholar 

  21. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web. ACM (2010)

    Google Scholar 

  22. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. TKDD 1(1) (2007)

    Google Scholar 

  23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405 (2003)

    Article  Google Scholar 

  24. Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Computing with Social Trust. Springer, London (2009)

    Google Scholar 

  25. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  26. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. Journal of statistical Mechanics: Theory and Experiment (2009)

    Google Scholar 

  27. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.-L.: Shaping communities out of triangles. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012. ACM (2012)

    Google Scholar 

  29. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America 105 (2008)

    Google Scholar 

  30. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MathSciNet  Google Scholar 

  31. SNAP, http://snap.stanford.edu/data

  32. TrustLet, http://www.trustlet.org/

  33. van Dongen, S.M.: Graph clustering by flow simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  34. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS, vol. 7302, pp. 25–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Yan, B., Gregory, S.: Detecting communities in networks by merging cliques. CoRR (2012)

    Google Scholar 

  36. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS 2012. ACM (2012)

    Google Scholar 

  37. Yen, L., Vanvyve, L., Wouters, D., Fouss, F., Verleysen, F., Saerens, M.: Clustering using a random-walk based distance measure. In: Proceedings of ESANN 2005 (2005)

    Google Scholar 

  38. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y., Bressan, S. (2013). Fast Community Detection. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 2013. Lecture Notes in Computer Science, vol 8055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40285-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40285-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40284-5

  • Online ISBN: 978-3-642-40285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics