Advertisement

SONIC: Scalable Multi-query OptimizatioN through Integrated Circuits

  • Ahcène Boukorca
  • Ladjel Bellatreche
  • Sid-Ahmed Benali Senouci
  • Zoé Faget
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

In the first generation of databases, query optimizers were designed to optimize individual queries. Due to the predefined number of tables of a given database, the probability to have interaction between queries is high. As a consequence, optimizers propose solutions for multi-queries optimization. Getting this optimization is known as NP-hard problem. To ensure a scalable solution, we borrow techniques used in the electronic design automation (EDA) domain. In this paper, we first make an analogy between the multi-query optimization problem and the EDA domain. Secondly, we propose to model our problem with hypergraphs massively used to design and test integrated circuits. Thirdly, we use our results to materialize views. Finally, experiments are conducted to show the scalability of our approach.

Keywords

Query Processing Execution Plan Query Optimization Oriented Graph Fact Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruno, N., Chaudhuri, S.: Efficient creation of statistics over query expressions. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 201–212 (2003)Google Scholar
  2. 2.
    Sellis, T.K.: Multiple-query optimization. ACM Transactions on Database Systems 13(1), 23–52 (1988)CrossRefGoogle Scholar
  3. 3.
    Kerkad, A., Bellatreche, L., Geniet, D.: Queen-bee: Query interaction-aware for buffer allocation and scheduling problem. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 156–167. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Interaction-aware scheduling of report-generation workloads. VLDB Journal 20(4), 589–615 (2011)CrossRefGoogle Scholar
  5. 5.
    Toroslu, I.H., Cosar, A.: Dynamic programming solution for multiple query optimization problem. Information Processing Letters 92(3), 149–155 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data warehousing environment. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 136–145. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  7. 7.
    Ioannidis, Y.E., Kang, Y.C.: Randomized algorithms for optimizing large join queries. In: Garcia-Molina, H., Jagadish, H.V. (eds.) ACM SIGMOD, pp. 312–321 (1990)Google Scholar
  8. 8.
    Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable multi-query optimization for sparql. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 666–677. IEEE (2012)Google Scholar
  9. 9.
    ElMasri, R., Navathe, S.B.: Fundamentals of Database Systems. Benjamin Cummings, Redwood City (1994)zbMATHGoogle Scholar
  10. 10.
    Gupta, H.: Selection and maintenance of views in a data warehouse. Ph.d. thesis, Stanford University (September 1999)Google Scholar
  11. 11.
    Yang, J., Karlapalem, K., Li, Q.: A framework for designing materialized views in data warehousing environment. In: ICDCS, p. 458 (1997)Google Scholar
  12. 12.
    Baralis, E., Paraboschi, S., Teniente, E.: Materialized view selection in a multidimensional database. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 156–165 (August 1997)Google Scholar
  13. 13.
    Galindo-Legaria, C.A., Grabs, T., Gukal, S., Herbert, S., Surna, A., Wang, S., Yu, W., Zabback, P., Zhang, S.: Optimizing star join queries for data warehousing in microsoft sql server. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 1190–1199 (2008)Google Scholar
  14. 14.
    Gupta, A., Sudarshan, S., Viswanathan, S.: Query scheduling in multi query optimization. In: Proceedings of the International Database Engineering & Applications Symposium (IDEAS), pp. 11–19. IEEE Computer Society, Washington, DC (2001)Google Scholar
  15. 15.
    Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in vlsi domain. IEEE Transactions on Very Large Scale Integration Systems 7(1), 69–79 (1999)CrossRefGoogle Scholar
  16. 16.
    Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: ACM/IEEE Design Automation Conference (DAC), pp. 343–348. ACM, New York (1999)Google Scholar
  17. 17.
    Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Application in vlsi domain. In: ACM/IEEE Design Automation Conference (DAC), pp. 526–529 (1997)Google Scholar
  18. 18.
    Selvakkumaran, N., Karypis, G.: Multiobjective hypergraph-partitioning algorithms for cut and maximum subdomain-degree minimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(3), 504–517Google Scholar
  19. 19.
    O’Neil, P., O’Neil, B., Chen, X.: Star schema benchmark (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ahcène Boukorca
    • 1
  • Ladjel Bellatreche
    • 1
  • Sid-Ahmed Benali Senouci
    • 2
  • Zoé Faget
    • 1
  1. 1.LIAS/ISAE-ENSMAPoitiersFrance
  2. 2.Mentors GraphicsMontbonnot-Saint-MartinFrance

Personalised recommendations