Advertisement

Generic Top-k Query Processing with Breadth-First Strategies

  • Mehdi Badr
  • Dan Vodislav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

Many algorithms for top-k query processing with ranking predicates have been proposed, but little effort has been directed toward genericity, i.e. supporting any type (sorted and/or random) or cost settings for the access to the lists of predicate scores. In previous work, we proposed BreadthRefine (BR), a generic algorithm that considers the current top-k candidates as a whole instead of focusing on the best candidate, then we compared it with specific top-k algorithms. In this paper, we compare the BR breadth-first strategy with other existing generic strategies and experimentally show that BR leads to better execution costs. To this end, we propose a general framework GF for generic top-k processing, able to express any top-k algorithm and present within this framework a first comparison between generic algorithms. We also extend the notion of θ-approximation to the GF framework and present a first experimental study of the approximation potential of top-k algorithms on early stopping.

Keywords

Top-k procesing query ranking multicriteria information retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries. In: VLDB, pp. 495–506 (2007)Google Scholar
  2. 2.
    Badr, M., Vodislav, D.: A general top-k algorithm for web data sources. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 379–393. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)CrossRefGoogle Scholar
  4. 4.
    Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases. In: ICDE, p. 369 (2002)Google Scholar
  5. 5.
    Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In: PODC, pp. 206–215 (2004)Google Scholar
  6. 6.
    Chang, K.C.-C., Hwang, S.W.: Minimal probing: supporting expensive predicates for top-k queries. In: SIGMOD Conference, pp. 346–357 (2002)Google Scholar
  7. 7.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image databases. In: VLDB, pp. 419–428 (2000)Google Scholar
  9. 9.
    Güntzer, U., Balke, W.-T., Kießling, W.: Towards efficient multi-feature queries in heterogeneous environments. In: ITCC, pp. 622–628 (2001)Google Scholar
  10. 10.
    Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. VLDB J. 13(3), 207–221 (2004)CrossRefGoogle Scholar
  11. 11.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4) (2008)Google Scholar
  12. 12.
    Li, C., Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: SIGMOD Conference, pp. 61–72 (2006)Google Scholar
  13. 13.
    Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: Ranksql: Query algebra and optimization for relational top-k queries. In: SIGMOD Conference, pp. 131–142 (2005)Google Scholar
  14. 14.
    Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Efficient aggregation of ranked inputs. In: ICDE, p. 72 (2006)Google Scholar
  15. 15.
    Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)CrossRefGoogle Scholar
  16. 16.
    Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k query algorithms. In: VLDB, pp. 637–648 (2005)Google Scholar
  17. 17.
    Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting incremental join queries on ranked inputs. In: VLDB, pp. 281–290 (2001)Google Scholar
  18. 18.
    Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guarantees. In: VLDB, pp. 648–659 (2004)Google Scholar
  19. 19.
    Hwang, S.W., Chang, K.C.-C.: Optimizing top-k queries for middleware access: A unified cost-based approach. ACM Trans. Database Syst. 32(1), 5 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mehdi Badr
    • 1
  • Dan Vodislav
    • 1
  1. 1.ETIS, ENSEA, CNRSUniversity of Cergy-PontoiseFrance

Personalised recommendations