Advertisement

Complex Matching of RDF Datatype Properties

  • Bernardo Pereira Nunes
  • Alexander Mera
  • Marco Antônio Casanova
  • Besnik Fetahu
  • Luiz André P. Paes Leme
  • Stefan Dietze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

Property mapping is a fundamental component of ontology matching, and yet there is little support that goes beyond the identification of single property matches. Real data often requires some degree of composition, trivially exemplified by the mapping of “first name” and “last name” to “full name” on one end, to complex matchings, such as parsing and pairing symbol/digit strings to SSN numbers, at the other end of the spectrum. In this paper, we propose a two-phase instance-based technique for complex datatype property matching. Phase 1 computes the Estimate Mutual Information matrix of the property values to (1) find simple, 1:1 matches, and (2) compute a list of possible complex matches. Phase 2 applies Genetic Programming to the much reduced search space of candidate matches to find complex matches. We conclude with experimental results that illustrate how the technique works. Furthermore, we show that the proposed technique greatly improves results over those obtained if the Estimate Mutual Information matrix or the Genetic Programming techniques were to be used independently.

Keywords

Ontology Matching Genetic Programming Mutual Information Schema Matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology matching. Journal of Computer and System Sciences 78(1), 105–118 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: Efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)Google Scholar
  4. 4.
    de Carvalho, M.G., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: A genetic programming approach to record deduplication. IEEE Trans. Knowl. Data Eng. 24(3), 399–412 (2012)CrossRefGoogle Scholar
  5. 5.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: imap: discovering complex semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD 2004, pp. 383–394. ACM, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: imap: Discovering complex mappings between database schemas. In: SIGMOD Conference, pp. 383–394 (2004)Google Scholar
  7. 7.
    Doan, A., Domingos, P., Levy, A.: Learning Source Descriptions for Data Integration. In: Proceedings of the Third International Workshop on the Web and Databases, Dallas, TX, pp. 81–86. ACM SIGMOD (2000)Google Scholar
  8. 8.
    Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.: Instance-based matching of large ontologies using locality-sensitive hashing. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 49–64. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Duan, S., Fokoue, A., Srinivas, K.: One size does not fit all: Customizing ontology alignment using user feedback. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  11. 11.
    Giunchiglia, F., Autayeu, A., Pane, J.: S-match: An open source framework for matching lightweight ontologies. Semantic Web Journal 3(3), 307–317 (2012)Google Scholar
  12. 12.
    Hanif, M.S., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Journal of Web Semantics 7(4), 344–356 (2009)CrossRefGoogle Scholar
  13. 13.
    Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. IEEE Trans. Knowl. Data Eng. 67(1), 140–160 (2008)CrossRefGoogle Scholar
  14. 14.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Journal of Web Semantics 7(3), 235–251 (2009)CrossRefGoogle Scholar
  15. 15.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  17. 17.
    Lambrix, P., Tan, H.: Sambo - a system for aligning and merging biomedical ontologies. Journal of Web Semantics 4(3), 196–206 (2006)CrossRefGoogle Scholar
  18. 18.
    Leme, L.A.P.P., Brauner, D.F., Breitman, K.K., Casanova, M.A., Gazola, A.: Matching object catalogues. ISSE 4(4), 315–328 (2008)Google Scholar
  19. 19.
    Leme, L.A.P.P., Casanova, M.A., Breitman, K.K., Furtado, A.L.: Instance-based OWL schema matching. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 14–26. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering 21(8), 1218–1232 (2009)CrossRefGoogle Scholar
  21. 21.
    Meffert, K.: Jgap - java genetic algorithms and genetic programming package (2013), http://jgap.sf.net/ (Online; accessed January 31, 2013)
  22. 22.
    Nagy, M., Vargas-Vera, M., Stolarski, P.: Dssim results for oaei 2009. In: Ontology Matching (2009)Google Scholar
  23. 23.
    Nunes, B.P., Caraballo, A.A.M., Casanova, M.A., Breitman, K., Leme, L.A.P.P.: Complex matching of rdf datatype properties. In: Ontology Matching (2011)Google Scholar
  24. 24.
    Nunes, B.P., Mera, A., Casanova, M.A., Breitman, K., Leme, L.A.P.P.: Complex matching of rdf datatype properties. Technical Report MCC-11/12 (September 2011)Google Scholar
  25. 25.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Raunich, S., Rahm, E.: Atom: Automatic target-driven ontology merging. In: ICDE Conference, pp. 1276–1279 (2011)Google Scholar
  27. 27.
    Ritze, D., Paulheim, H.: Towards an automatic parameterization of ontology matching tools based on example mappings. In: Ontology Matching (2011)Google Scholar
  28. 28.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches, pp. 146–171 (2005)Google Scholar
  29. 29.
    Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  30. 30.
    Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual and cross-lingual ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 665–680. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Wang, P., Zhou, Y., Xu, B.: Matching large ontologies based on reduction anchors. In: IJCAI, pp. 2343–2348 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bernardo Pereira Nunes
    • 1
    • 2
  • Alexander Mera
    • 1
  • Marco Antônio Casanova
    • 1
  • Besnik Fetahu
    • 2
  • Luiz André P. Paes Leme
    • 3
  • Stefan Dietze
    • 2
  1. 1.Department of InformaticsPUC-Rio - Rio de JaneiroBrazil
  2. 2.L3S Research CenterLeibniz University HannoverHannoverGermany
  3. 3.Computer Science InstituteFluminense Federal UniversityNiteróiBrazil

Personalised recommendations