Advertisement

GUN: An Efficient Execution Strategy for Querying the Web of Data

  • Gabriela Montoya
  • Luis-Daniel Ibáñez
  • Hala Skaf-Molli
  • Pascal Molli
  • Maria-Esther Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

Local-As-View (LAV) mediators provide a uniform interface to a federation of heterogeneous data sources to attempt the execution of queries against the federation. LAV mediators rely on query rewriters to translate mediator queries into equivalent queries on the federated data sources. The query rewriting problem in LAV mediators has shown to be NP-complete, and there may be an exponential number of rewritings, making unfeasible the execution or even generation of all the rewritings for some queries. The complexity of this problem can be particularly impacted when queries and data sources are described using SPARQL conjunctive queries, for which millions of rewritings could be generated. We aim at providing an efficient solution to the problem of executing LAV SPARQL query rewritings while the gathered answer is as complete as possible. We formulate the Result-Maximal k-Execution problem (ReMakE) as the problem of maximizing the query results obtained from the execution of only k rewritings. Additionally, a novel query execution strategy called GUN is proposed to solve the ReMakE problem. Our experimental evaluation demonstrates that GUN outperforms traditional techniques in terms of answer completeness and execution time.

Keywords

Execution Time Query Processing Conjunctive Query SPARQL Query Triple Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using views. In: Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1995, pp. 95–104 (1995)Google Scholar
  2. 2.
    Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M., Senellart, P.: Web data management. Cambridge University Press (2011)Google Scholar
  3. 3.
    Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1998, pp. 254–263 (1998)Google Scholar
  4. 4.
    Arvelo, Y., Bonet, B., Vidal, M.E.: Compilation of query-rewriting problems into tractable fragments of propositional logic. In: AAAI, pp. 225–230 (2006)Google Scholar
  5. 5.
    Konstantinidis, G., Ambite, J.L.: Scalable query rewriting: a graph-based approach. In: SIGMOD Conference, pp. 97–108 (2011)Google Scholar
  6. 6.
    Vidal, M.-E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., Polleres, A.: Efficiently joining group patterns in SPARQL queries. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bizer, C., Shultz, A.: The berlin sparql benchmark. International Journal on Semantic Web and Information Systems 5, 1–24 (2009)Google Scholar
  9. 9.
    Castillo-Espinola, R.: Indexing RDF data using materialized SPARQL queries. PhD thesis, Humboldt-Universität zu Berlin (2012)Google Scholar
  10. 10.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer 25, 38–49 (1992)CrossRefGoogle Scholar
  11. 11.
    Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10, 270–294 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of sparql. ACM Transactions on Database Systems (TODS) 34 (2009)Google Scholar
  13. 13.
    Baget, J.-F., Croitoru, M., Gutierrez, A., Leclère, M., Mugnier, M.-L.: Translations between RDF(S) and conceptual graphs. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS (LNAI), vol. 6208, pp. 28–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Chaudhuri, S.: An overview of query optimization in relational systems. In: Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1998, pp. 34–43 (1998)Google Scholar
  15. 15.
    Izquierdo, D., Vidal, M.-E., Bonet, B.: An expressive and efficient solution to the service selection problem. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 386–401. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Le, W., Duan, S., Kementsietsidis, A., Li, F., Wang, M.: Rewriting queries on sparql views. In: WWW, pp. 655–664. ACM (2011)Google Scholar
  17. 17.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Basca, C., Bernstein, A.: Avalanche: Putting the Spirit of the Web back into Semantic Web Querying. In: SSWS, pp. 64–79 (2010)Google Scholar
  19. 19.
    Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data summaries for on-demand queries over linked data. In: WWW, pp. 411–420 (2010)Google Scholar
  20. 20.
    Hartig, O.: Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Ladwig, G., Tran, T.: SIHJoin: Querying remote and local linked data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 139–153. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Ullman, J.D.: Information integration using logical views. Theoretical Computer Science 239, 189–210 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous information sources using source descriptions. In: VLDB, pp. 251–262 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriela Montoya
    • 1
  • Luis-Daniel Ibáñez
    • 1
  • Hala Skaf-Molli
    • 1
  • Pascal Molli
    • 1
  • Maria-Esther Vidal
    • 2
  1. 1.LINA– Nantes UniversityFrance
  2. 2.Universidad Simón BolívarVenezuela

Personalised recommendations