Skip to main content

Targeting NMDA Receptors in Epilepsy

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

N-methyl-D-aspartate receptors (NMDARs) are one of the most widely-studied receptors in the central nervous system (CNS). These receptors mediate Ca2+ influx into the neurons and play pivotal roles in the pathophysiology of many neurological diseases including epilepsy. Animal models of seizure and status epilepticus and clinical studies have indicated that NMDAR functioning can be altered during epilepsy and thereafter in some specific types of seizure. Different classes of NMDAR antagonists also have antiepileptic effects in both clinical and preclinical studies, although some contradictory effects in both preclinical and clinical studies have been reported. In this book chapter, we review the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists being investigated in clinical trials and animal models of seizure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MS, Mather A, Enna SJ (1999) Binding of [3H]desglycinyl remacemide to rat brain membranes: association with the benzomorphan attachment site of the N-methyl-d-aspartic acid receptor channel. Brain Res 827:46–50

    PubMed  CAS  Google Scholar 

  • Al-Ghoul WM, Meeker RB, Greenwood RS (1997) Amygdala kindling alters N-methyl-D-aspartate receptor subunit messenger RNA expression in the rat supraoptic nucleus. Neuroscience 77:985–992

    PubMed  CAS  Google Scholar 

  • Andre VM, Flores-Hernandez J, Cepeda C, Starling AJ, Nguyen S, Lobo MK, Vinters HV, Levine MS, Mathern GW (2004) NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cereb Cortex 14:634–646

    PubMed  Google Scholar 

  • Apland JP, Cann FJ (1995) Anticonvulsant effects of memantine and MK-801 in guinea pig hippocampal slices. Brain Res Bull 37:311–316

    PubMed  CAS  Google Scholar 

  • Aram JA, Lodge D (1987) Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett 83:345–350

    PubMed  CAS  Google Scholar 

  • Ashton D, Willems R, De Prins E, Wauquier A (1988) Selective inhibition of synaptic versus non-synaptic epileptogenesis by NMDA antagonists in the in vitro hippocampus. Epilepsy Res 2:219–222

    PubMed  CAS  Google Scholar 

  • Avoli M, Drapeau C, Perreault P (1990) Epileptiform activity induced by low chloride medium in the CAI subfield of the hippocampal slice. J Neurophysiol 6:1747–1757

    Google Scholar 

  • Babel CS, Bedi HK, Devpura JC, Pandey SK (1973) Serum and cerebrospinal fluid magnesium and calcium contents in idiopathic grandmal epilepsy. J Assoc Physicians India 21:481–487

    PubMed  CAS  Google Scholar 

  • Bac P, Herrenknecht C, Binet P, Durlach J (1993) Audiogenic seizures in magnesium-deficient mice: effects of magnesium pyrrolidone-2-carboxylate, magnesium acetyltaurinate, magnesium chloride and vitamin B-6. Magnes Res 6:11–19

    PubMed  CAS  Google Scholar 

  • Bayer TA, Wiestler OD, Wolf HK (1995) Hippocampal loss of N-methyl-D-aspartate receptor subunit 1 mRNA in chronic temporal lobe epilepsy. Acta Neuropathol 89:446–450

    PubMed  CAS  Google Scholar 

  • Bertram EH, Lothman EW (1990) NMDA receptor antagonists and limbic status epilepticus: a comparison with standard anticonvulsants. Epilepsy Res 5:177–184

    PubMed  CAS  Google Scholar 

  • Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E (1999) Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV). Epilepsy Res 34:1–41

    PubMed  CAS  Google Scholar 

  • Bienkowski P, Krzascik P, Koros E, Kostowski W, Scinska A, Danysz W (2001) Effects of a novel uncompetitive NMDA receptor antagonist, MRZ 2/579 on ethanol self-administration and ethanol withdrawal seizures in the rat. Eur J Pharmacol 413:81–89

    PubMed  CAS  Google Scholar 

  • Bisaga A, Krzascik P, Jankowska E, Palejko W, Kostowski W, Danysz W (1993) Effect of glutamate receptor antagonists on N-methyl-D-aspartate- and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced convulsant effects in mice and rats. Eur J Pharmacol 242:213–220

    PubMed  CAS  Google Scholar 

  • Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25:3312–3322

    PubMed  CAS  Google Scholar 

  • Bleck TP, Quigg M, Nathan BR, Smith TL, Kapur J (2002) Electroencephalographic effects of ketamine treatment for refractory status epilepticus. Epilepsia 43:282

    Google Scholar 

  • Borges LF, Gucer G (1978) Effect of magnesium on epileptic foci. Epilepsia 19:81–91

    PubMed  CAS  Google Scholar 

  • Borowicz KK, Luszczki J, Czuczwar SJ (2004) Interactions between non-barbiturate injectable anesthetics and conventional antiepileptic drugs in the maximal electroshock test in mice–an isobolographic analysis. Eur Neuropsychopharmacol 14:163–172

    PubMed  CAS  Google Scholar 

  • Borris DJ, Bertram EH, Kapur J (2000) Ketamine controls prolonged status epilepticus. Epilepsy Res 42:117–122

    PubMed  CAS  Google Scholar 

  • Bourn WM, Yang DJ, Davisson JN (1983) Effect of ketamine enantiomers on sound-induced convulsions in epilepsy prone rats. Pharmacol Res Commun 15:815–824

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Albertson TE, Winters WD (1983a) Cortical kindled seizures: modification by excitant and depressant drugs. Epilepsia 24:356–367

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Albertson TE, Winters WD, Baselt RC (1983b) Ketamine-induced changes in kindled amygdaloid seizures. Neuropharmacology 22:887–894

    PubMed  CAS  Google Scholar 

  • Brackett RL, Pouw B, Blyden JF, Nour M, Matsumoto RR (2000) Prevention of cocaine-induced convulsions and lethality in mice: effectiveness of targeting different sites on the NMDA receptor complex. Neuropharmacology 39:407–418

    PubMed  CAS  Google Scholar 

  • Brady RJ, Swann JW (1986) Ketamine selectively suppresses synchronized afterdischarges in immature hippocampus. Neurosci Lett 69:143–149

    PubMed  CAS  Google Scholar 

  • Brodie MJ, Wroe SJ, Dean AD, Holdich TA, Whitehead J, Stevens JW (2002) Efficacy and safety of remacemide versus carbamazepine in newly diagnosed epilepsy: comparison by sequential analysis. Epilepsy Behav 3:140–146

    PubMed  Google Scholar 

  • Buck DR, Mahoney AW, Hendricks DG (1976) Effect of magnesium deficiency on nonspecific excitability level (NEL) and audiogenic seizure susceptibility. Pharmacol Biochem Behav 5:529–534

    PubMed  CAS  Google Scholar 

  • Carter DS, Deshpande LS, Rafiq A, Sombati S and Delorenzo RJ (2010) Characterization of spontaneous recurrent epileptiform discharges in hippocampal-entorhinal cortical slices prepared from chronic epileptic animals. Seizure

    Google Scholar 

  • Celesia GG, Chen RC (1974) Effects of ketamine on EEG activity in cats and monkeys. Electroencephalogr Clin Neurophysiol 37:354–353

    PubMed  CAS  Google Scholar 

  • Celesia GG, Chen RC, Bamforth BJ (1975) Effects of ketamine in epilepsy. Neurology 25:169–172

    PubMed  CAS  Google Scholar 

  • Chadwick DW, Betts TA, Boddie HG, Crawford PM, Lindstrom P, Newman PK, Soryal I, Wroe S, Holdich TA (2002) Remacemide hydrochloride as an add-on therapy in epilepsy: a randomized, placebo-controlled trial of three dose levels (300, 600 and 1200 mg/day) in a Q.I.D. regimen. Seizure 11:114–123

    PubMed  CAS  Google Scholar 

  • Chapman AG, Meldrum BS (1989) Non-competitive N-methyl-D-aspartate antagonists protect against sound-induced seizures in DBA/2 mice. Eur J Pharmacol 166:201–211

    PubMed  CAS  Google Scholar 

  • Chapman AG, Woodburn VL, Woodruff GN, Meldrum BS (1996) Anticonvulsant effect of reduced NMDA receptor expression in audiogenic DBA/2 mice. Epilepsy Res 26:25–35

    PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The neuropharmacology of 2-(omicron-chlorophenyl)-2-methylaminocyclohexanoe hydrochloride. J Pharmacol Exp Ther 152:332–339

    PubMed  CAS  Google Scholar 

  • Chojnacka-Wojcik E, Tatarczynska E, Maj J (1983) The influence of memantine on the anticonvulsant effects of the antiepileptic drugs. Pol J Pharmacol Pharm 35:511–515

    PubMed  CAS  Google Scholar 

  • Claudet I, Marechal C (2009) Status epilepticus in a pediatric patient with amantadine overdose. Pediatr Neurol 40:120–122

    PubMed  Google Scholar 

  • Clifford DB, Olney JW, Benz AM, Fuller TA, Zorumski CF (1990) Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia 31:382–390

    PubMed  CAS  Google Scholar 

  • Clifford DB, Zorumski CF, Olney JW (1989) Ketamine and MK-801 prevent degeneration of thalamic neurons induced by focal cortical seizures. Exp Neurol 105:272–279

    PubMed  CAS  Google Scholar 

  • Cook LL (2000) Ventricular enlargement and the lithium/pilocarpine seizure model: possible explanation for agonistic behaviour. Int J Neurosci 100:117–123

    PubMed  CAS  Google Scholar 

  • Corssen G, Little SC, Tavakoli M (1974) Ketamine and epilepsy. Anesth Analg 53:319–335

    PubMed  CAS  Google Scholar 

  • Corssen G, Miyasaka M, Domino EF (1968) Changing concepts in pain control during surgery: dissociative anesthesia with CI-581. A progress report. Anesth Analg 47:746–759

    PubMed  CAS  Google Scholar 

  • Cotton DB, Hallak M, Janusz C, Irtenkauf SM, Berman RF (1993) Central anticonvulsant effects of magnesium sulfate on N-methyl-D-aspartate-induced seizures. Am J Obstet Gynecol 168:974–978

    PubMed  CAS  Google Scholar 

  • Cramer CL, Stagnitto ML, Knowles MA, and Palmer GC (1994) Kainic acid and 4-aminopyridine seizure models in mice: evaluation of efficacy of anti-epileptic agents and calcium antagonists. Life Sci 54:PL271–PL275

    Google Scholar 

  • Crino PB, Duhaime AC, Baltuch G, White R (2001) Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56:906–913

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 16:1–9

    Google Scholar 

  • Cunha AO, Mortari MR, Liberato JL, dos Santos WF (2009) Neuroprotective effects of diazepam, carbamazepine, phenytoin and ketamine after pilocarpine-induced status epilepticus. Basic Clin Pharmacol Toxicol 104:470–477

    PubMed  CAS  Google Scholar 

  • Czuczwar SJ, Turski WA, Kleinrok Z (1996) Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs. Metab Brain Dis 11:143–152

    PubMed  CAS  Google Scholar 

  • D’Hooge R, Pei YQ, De Deyn PP (1993) N-methyl-D-aspartate receptors contribute to guanidinosuccinate-induced convulsions in mice. Neurosci Lett 157:123–126

    PubMed  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W et al (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381

    Google Scholar 

  • Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE (1964) Antiviral activity of 1-adamantanamine (amantadine). Science 144:862–863

    PubMed  CAS  Google Scholar 

  • Davis RW, Tolstoshev GC (1976) Ketamine–use in severe febrile convulsions. Med J Aust 2:465–466

    PubMed  CAS  Google Scholar 

  • De Sarro GB, De Sarro A (1993) Anticonvulsant properties of non-competitive antagonists of the N-methyl-D-aspartate receptor in genetically epilepsy-prone rats: comparison with CPPene. Neuropharmacology 32:51–58

    PubMed  Google Scholar 

  • DeLorenzo RJ (1986) A molecular approach to the calcium signal in brain: relationship to synaptic modulation and seizure discharge. Adv Neurol 44:435–464

    PubMed  CAS  Google Scholar 

  • Deshpande SS, Smith CD, Filbert MG (1995) Assessment of primary neuronal culture as a model for soman-induced neurotoxicity and effectiveness of memantine as a neuroprotective drug. Arch Toxicol 69:384–390

    PubMed  CAS  Google Scholar 

  • Deutsch SI, Mastropaolo J, Riggs RL, Rosse RB (1997) The antiseizure efficacies of MK-801, phencyclidine, ketamine, and memantine are altered selectively by stress. Pharmacol Biochem Behav 58:709–712

    PubMed  CAS  Google Scholar 

  • Devinsky O, Vazquez B, Faught E, Leppik IE, Pellock JM, Schachter S, Alderfer V, Holdich TA (2002) A double-blind, placebo-controlled study of remacemide hydrochloride in patients with refractory epilepsy following pre-surgical assessment. Seizure 11:371–376

    PubMed  CAS  Google Scholar 

  • Dichter MA, Brodie MJ (1996) New antiepileptic drugs. N Engl J Med 334:1583–1590

    PubMed  CAS  Google Scholar 

  • Dodson WE (1993) Felbamate in the treatment of Lennox-Gastaut syndrome: results of a 12-month open-label study following a randomized clinical trial. Epilepsia 34(Suppl 7):S18–S24

    PubMed  Google Scholar 

  • Dorandeu F, Baille V, Mikler J, Testylier G, Lallement G, Sawyer T, Carpentier P (2007) Protective effects of S + ketamine and atropine against lethality and brain damage during soman-induced status epilepticus in guinea-pigs. Toxicology 234:185–193

    PubMed  CAS  Google Scholar 

  • Drake ME Jr, Pakalnis A, Denio LS, Phillips B (1991) Amantadine hydrochloride for refractory generalized epilepsy in adults. Acta Neurol Belg 91:159–164

    PubMed  Google Scholar 

  • Euser AG, Cipolla MJ (2009) Magnesium sulfate for the treatment of eclampsia: a brief review. Stroke 40:1169–1175

    PubMed  CAS  Google Scholar 

  • Faught E, Sachdeo RC, Remler MP, Chayasirisobhon S, Iragui-Madoz VJ, Ramsay RE, Sutula TP, Kanner A, Harner RN, Kuzniecky R et al (1993) Felbamate monotherapy for partial-onset seizures: an active-control trial. Neurology 43:688–692

    PubMed  CAS  Google Scholar 

  • Ferrer-Allado T, Brechner VL, Dymond A, Cozen H, Crandall P (1973) Ketamine-induced electroconvulsive phenomena in the human limbic and thalamic regions. Anesthesiology 38:333–344

    PubMed  CAS  Google Scholar 

  • Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA (1995) Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 36:543–558

    PubMed  CAS  Google Scholar 

  • Freitas RM, Sousa FC, Viana GS, Fonteles MM (2006) Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett 408:79–83

    PubMed  CAS  Google Scholar 

  • French J, Smith M, Faught E, Brown L (1999) Practice advisory: the use of felbamate in the treatment of patients with intractable epilepsy: report of the quality standards subcommittee of the American academy of neurology and the American epilepsy society. Neurology 52:1540–1545

    PubMed  CAS  Google Scholar 

  • Frey HH, Voits M (1991) Effect of psychotropic agents on a model of absence epilepsy in rats. Neuropharmacology 30:651–656

    PubMed  CAS  Google Scholar 

  • Fujikawa DG (1996) The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 725:11–22

    PubMed  CAS  Google Scholar 

  • Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav 7:S3–S11

    PubMed  Google Scholar 

  • Garske GE, Palmer GC, Napier JJ, Griffith RC, Freedman LR, Harris EW, Ray R, McCreedy SA, Blosser JC, Woodhead JH et al (1991) Preclinical profile of the anticonvulsant remacemide and its enantiomers in the rat. Epilepsy Res 9:161–174

    PubMed  CAS  Google Scholar 

  • Gerfin-Moser A, Grogg F, Rietschin L, Thompson SM, Streit P (1995) Alterations in glutamate but not GABAA receptor subunit expression as a consequence of epileptiform activity in vitro. Neuroscience 67:849–865

    PubMed  CAS  Google Scholar 

  • Geter-Douglass B, Witkin JM (1999) Behavioral effects and anticonvulsant efficacies of low-affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology 146:280–289

    PubMed  CAS  Google Scholar 

  • Ghasemi A, Saberi M, Ghasemi M, Shafaroodi H, Moezi L, Bahremanhd A, Montaser-Kouhsari L, Ziai P, Dehpour AR (2010a) Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav. doi:10.1016/j.yebeh.2010.09.004

    Google Scholar 

  • Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22:617–640

    PubMed  Google Scholar 

  • Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Ghasemi A, Bahremand A, Ziai P, Dehpour AR (2010b) Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res 91:39–48

    PubMed  CAS  Google Scholar 

  • Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Heydarpour P, Ghasemi A, Talab SS, Ziai P, Bahremand A, Dehpour AR (2010c) Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 18:171–178

    PubMed  Google Scholar 

  • Gmiro VE, Serdyuk SE (2008) Combined blockade of AMPA and NMDA receptors in the brain of rats prevents pentylenetetrazole-induced clonic and tonic-clonic seizures without ataxia. Bull Exp Biol Med 145:728–730

    PubMed  CAS  Google Scholar 

  • Govil MK, Mangal BD, Alam SM, Mahendru RK, Srivastava DK, Mudgal JC (1981) Serum and cerebrospinal fluid calcium and magnesium levels in cases of idiopathic grand mal epilepsy and induced convulsions. J Assoc Physicians India 29:695–699

    PubMed  CAS  Google Scholar 

  • Graves NM (1993) Felbamate. Ann Pharmacother 27:1073–1081

    PubMed  CAS  Google Scholar 

  • Greenberg DM, Tufts EV (1934) Effect of a diet low in magnesium on the rat. Proc Soc Exp Biol Med 5:674–675

    Google Scholar 

  • Griffiths WJ Jr (1947) Audiogenic fits produced by magnesium deficiency in tame domestic Norway rats and in wild Norway and Alexandrine rats. Am J Physiol 149:135–141

    PubMed  CAS  Google Scholar 

  • Guler G, Erdogan F, Golgeli A, Akin A, Boyaci A (2005) Ketamine reduces lidocaine-induced seizures in mice. Int J Neurosci 115:1239–1244

    PubMed  CAS  Google Scholar 

  • Hallak M (1998) Effect of parenteral magnesium sulfate administration on excitatory amino acid receptors in the rat brain. Magnes Res 11:117–131

    PubMed  CAS  Google Scholar 

  • Halonen T, Nissinen J, Pitkanen A (1999) Neuroprotective effect of remacemide hydrochloride in a perforant pathway stimulation model of status epilepticus in the rat. Epilepsy Res 34:251–269

    PubMed  CAS  Google Scholar 

  • Hanna S, Harrison M, Macintyre I, Fraser R (1960) The syndrome of magnesium deficiency in man. Lancet 2:172–176

    PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    PubMed  CAS  Google Scholar 

  • Harty TP, Rogawski MA (2000) Felbamate block of recombinant N-methyl-D-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Res 39:47–55

    PubMed  CAS  Google Scholar 

  • Heinemann U, Hamon B (1986) Calcium and epileptogenesis. Exp Brain Res 65:1–10

    PubMed  CAS  Google Scholar 

  • Henshall DC, Chen J, Simon RP (2000) Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 74:1215–1223

    PubMed  CAS  Google Scholar 

  • Herink J (1997) Effect of alprazolam and ketamine on seizures induced by two different convulsants. Acta Medica (Hradec Kralove) 40:9–11

    CAS  Google Scholar 

  • Hirshman CA, Krieger W, Littlejohn G, Lee R, Julien R (1982) Ketamine-aminophylline-induced decrease in seizure threshold. Anesthesiology 56:464–467

    PubMed  CAS  Google Scholar 

  • Hosain S, Nagarajan L, Carson D, Solomon G, Mast J, Labar D (1997) Felbamate for refractory infantile spasms. J Child Neurol 12:466–468

    PubMed  CAS  Google Scholar 

  • Hsieh CY, Sung PS, Tsai JJ, Huang CW (2010) Terminating prolonged refractory status epilepticus using ketamine. Clin Neuropharmacol 33:165–167

    PubMed  Google Scholar 

  • Hu RQ, Davies JA (1995) The effect of the desglycinyl metabolite of remacemide on cortical wedges prepared from DBA/2 mice. Eur J Pharmacol 287:251–256

    PubMed  CAS  Google Scholar 

  • Hurst DL, Rolan TD (1995) The use of felbamate to treat infantile spasms. J Child Neurol 10:134–136

    PubMed  CAS  Google Scholar 

  • Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M (2000) Evidence for GABA(A) receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesth Analg 91:230–236

    PubMed  CAS  Google Scholar 

  • Isokawa M, Levesque MF (1991) Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci Lett 132:212–216

    PubMed  CAS  Google Scholar 

  • Jensen PJ, Millan N, Mack KJ (1997) Cortical NMDAR-1 gene expression is rapidly upregulated after seizure. Brain Res Mol Brain Res 44:157–162

    PubMed  CAS  Google Scholar 

  • Jones MW, Blume WT, Guberman A, Lee MA, Pillay N, Weaver DF, Veloso F, Holdich TA (2002) Remacemide hydrochloride as an add-on therapy in epilepsy: a randomized, placebo-controlled trial of three dose levels (300, 600 and 800 mg/day) in a B.I.D. regimen. Seizure 11:104–113

    PubMed  CAS  Google Scholar 

  • Kalviainen R, Keranen T, Riekkinen PJ Sr (1993) Place of newer antiepileptic drugs in the treatment of epilepsy. Drugs 46:1009–1024

    PubMed  CAS  Google Scholar 

  • Kaplan PW, Lesser RP, Fisher RS, Repke JT, Hanley DF (1990) A continuing controversy: magnesium sulfate in the treatment of eclamptic seizures. Arch Neurol 47:1031–1032

    PubMed  CAS  Google Scholar 

  • Khanna N, Bhalla S (1999) Role of ketamine in convulsions. Indian J Med Sci 53:475–480

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Iwasa H, Sato T (2000) Lasting changes in NMDAR1 mRNA level in various regions of cerebral cortex in epileptogenesis of amygdaloid-kindled rat. Psychiatry Clin Neurosci 54:573–577

    PubMed  CAS  Google Scholar 

  • Kleckner NW, Glazewski JC, Chen CC, Moscrip TD (1999) Subtype-selective antagonism of N-methyl-D-aspartate receptors by felbamate: insights into the mechanism of action. J Pharmacol Exp Ther 289:886–894

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Czuczwar S, Wojcik A, Przegalinski E (1978) Brain dopamine and seizure susceptibility in mice. Pol J Pharmacol Pharm 30:513–519

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Czuczwar SJ, Kozicka M (1980) Effect of dopaminergic and GABA-ergic drugs given alone or in combination on the anticonvulsant action of phenobarbital and diphenylhydantoin in the electroshock test in mice. Epilepsia 21:519–529

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Czuczwar SJ, Kozicka M, Zarkowski A (1981) Effect of combined GABA-ergic and dopaminergic stimulation on the action of some antiepileptic drugs in pentetrazol-induced convulsions. Pol J Pharmacol Pharm 33:13–23

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Turski WA, Czuczwar SJ (1995) Excitatory amino acid antagonists and the anticonvulsive activity of conventional antiepileptic drugs. Pol J Pharmacol 47:247–252

    PubMed  CAS  Google Scholar 

  • Kohr G, Heinemann U (1989) Effects of NMDA antagonists on picrotoxin-, low Mg2+- and low Ca2+-induced epileptogenesis and on evoked changes in extracellular Na+ and Ca2+ concentrations in rat hippocampal slices. Epilepsy Res 4:187–200

    PubMed  CAS  Google Scholar 

  • Kolesnikov Y, Jain S, Wilson R, Pasternak GW (1997) Blockade of morphine-induced hindlimb myoclonic seizures in mice by ketamine. Pharmacol Biochem Behav 56:423–425

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Hubers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 206:297–300

    PubMed  CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II Anticonvulsant drug screening. Epilepsia 19:409–428

    PubMed  CAS  Google Scholar 

  • Kraus JE, Yeh GC, Bonhaus DW, Nadler JV, McNamara JO (1994) Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3. J Neurosci 14:4196–4205

    PubMed  CAS  Google Scholar 

  • Kriegstein AR, Suppes T, Prince DA (1987) Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. Dev Brain Res 34:161–171

    Google Scholar 

  • Kruse HD, Orent ER, McCollum EV (1932) Studies on magnesium deficiency in animals I. Symptomatology resulting from magnesium deprivation. J Biol Chem 96:519–539

    Google Scholar 

  • Kubova H, Mares P (1994) Effects of MK-801 (dizocilpine) and ketamine on strychnine-induced convulsions in rats: comparison with benzodiazepines and standard anticonvulsants. Physiol Res 43:313–320

    PubMed  CAS  Google Scholar 

  • Lason W, Turchan J, Przewlocki R, Machelska H, Labuz D, Przewlocka B (1997) Effects of pilocarpine and kainate-induced seizures on N-methyl-D-aspartate receptor gene expression in the rat hippocampus. Neuroscience 78:997–1004

    PubMed  CAS  Google Scholar 

  • Lazarova M, Roussinov K (1979) On some relationships between dopaminergic and serotoninergic mechanisms in pentylenetetrazol convulsions in albino mice. Acta Physiol Pharmacol Bulg 5:67–74

    PubMed  CAS  Google Scholar 

  • Lazarova MB, Roussinov KS (1978) On certain effects of dopaminergic agents in pentylenetetrazol convulsions. Acta Physiol Pharmacol Bulg 4:50–55

    PubMed  CAS  Google Scholar 

  • Lee WL, Hablitz JJ (1990) Effect of APV and ketamine on epileptiform activity in the CA1 and CA3 regions of the hippocampus. Epilepsy Res 6:87–94

    PubMed  CAS  Google Scholar 

  • Leppik IE, Dreifuss FE, Pledger GW, Graves NM, Santilli N, Drury I, Tsay JY, Jacobs MP, Bertram E, Cereghino JJ et al (1991) Felbamate for partial seizures: results of a controlled clinical trial. Neurology 41:1785–1789

    PubMed  CAS  Google Scholar 

  • Liu FY, Wang XF, Li MW, Li JM, Xi ZQ, Luan GM, Zhang JG, Wang YP, Sun JJ, Li YL (2007) Upregulated expression of postsynaptic density-93 and N-methyl-D-aspartate receptors subunits 2B mRNA in temporal lobe tissue of epilepsy. Biochem Biophys Res Commun 358:825–830

    PubMed  CAS  Google Scholar 

  • Loscher W, Honack D (1990) High doses of memantine (1-amino-3,5-dimethyladamantane) induce seizures in kindled but not in non-kindled rats. Naunyn Schmiedebergs Arch Pharmacol 341:476–481

    PubMed  CAS  Google Scholar 

  • Loscher W, Honack D (1994) Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. Eur J Pharmacol 259:R3–R5

    PubMed  CAS  Google Scholar 

  • Lukomskaia N, Rukoiatkina NI, Gorbunova LV, Gmiro VE, Magazanik LG (2003) Role of NMDA and AMPA glutamate receptors in the mechanism of korazol-induced convulsions in mice. Ross Fiziol Zh Im I M Sechenova 89:292–301

    PubMed  Google Scholar 

  • Lukomskaya NY, Rukoyatkina NI, Gorbunova LV, Gmiro VE, Magazanik LG (2004) Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasole convulsions in mice. Neurosci Behav Physiol 34:783–789

    PubMed  CAS  Google Scholar 

  • Lupp A, Lucking CH, Koch R, Jackisch R, Feuerstein TJ (1992) Inhibitory effects of the antiparkinsonian drugs memantine and amantadine on N-methyl-D-aspartate-evoked acetylcholine release in the rabbit caudate nucleus in vitro. J Pharmacol Exp Ther 263:717–724

    PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150

    PubMed  CAS  Google Scholar 

  • Manocha A, Sharma KK, Mediratta PK (2001) Possible mechanism of anticonvulsant effect of ketamine in mice. Indian J Exp Biol 39:1002–1008

    PubMed  CAS  Google Scholar 

  • Mares P, Mikulecka A (2009) Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats. Epilepsy Behav 14:32–39

    PubMed  Google Scholar 

  • Marianowski R, Pollard H, Moreau J, Despres G, Ben Ari Y, Tran Ba Huy P, Romand R (1995) N-Methyl-D-aspartate receptor subunits NR1 and NR2C are overexpressed in the inferior colliculus of audiogenic mice. Neurosci Lett 189:190–194

    Google Scholar 

  • Martin BS, Kapur J (2008) A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia 49:248–255

    PubMed  CAS  Google Scholar 

  • Masukawa LM, Higashima M, Hart GJ, Spencer DD, O’Connor MJ (1991) NMDA receptor activation during epileptiform responses in the dentate gyrus of epileptic patients. Brain Res 562:176–180

    PubMed  CAS  Google Scholar 

  • Mathern GW, Leite JP, Babb TL, Pretorius JK, Kuhlman PA, Mendoza D, Fried I, Sakamoto AC, Assirati JA, Adelson PD, Peacock WJ (1996) Aberrant hippocampal mossy fiber sprouting correlates with greater NMDAR2 receptor staining. NeuroReport 7:1029–1035

    PubMed  CAS  Google Scholar 

  • Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, Chimelli LM, Fried I, Sakamoto AC, Assirati JA et al (1997) Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 120(Pt 11):1937–1959

    PubMed  Google Scholar 

  • Mathern GW, Pretorius JK, Leite JP, Kornblum HI, Mendoza D, Lozada A, Bertram EH 3rd (1998a) Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy. Epilepsy Res 32:154–171

    PubMed  CAS  Google Scholar 

  • Mathern GW, Pretorius JK, Mendoza D, Leite JP, Chimelli L, Born DE, Fried I, Assirati JA, Ojemann GA, Adelson PD et al (1999) Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Ann Neurol 46:343–358

    PubMed  CAS  Google Scholar 

  • Mathern GW, Pretorius JK, Mendoza D, Lozada A, Kornblum HI (1998b) Hippocampal AMPA and NMDA mRNA levels correlate with aberrant fascia dentata mossy fiber sprouting in the pilocarpine model of spontaneous limbic epilepsy. J Neurosci Res 54:734–753

    PubMed  CAS  Google Scholar 

  • Matsushige T, Matsufuji H, Ichiyama T, Furukawa S (2007) A girl with refractory childhood absence epilepsy improved by add-on amantadine therapy. No To Hattatsu 39:309–310

    PubMed  CAS  Google Scholar 

  • McCabe RT, Wasterlain CG, Kucharczyk N, Sofia RD, Vogel JR (1993) Evidence for anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther 264:1248–1252

    PubMed  CAS  Google Scholar 

  • McCarthy DA, Cheng G, Kaump DH, Ensor C (1965) General anesthetic and other pharmacological properties of 2-(O-chlorophenyl)-2-methylamino-cyclohexanone HCl (CI-581). J New Drugs 5:21–33

    PubMed  CAS  Google Scholar 

  • McLean MJ (1987) In vitro electrophysiological evidence predicting anticonvulsant efficacy of memantine and flunarizine. Pol J Pharmacol Pharm 39:513–525

    PubMed  CAS  Google Scholar 

  • McLean MJ, Gupta RC, Dettbarn WD, Wamil AW (1992) Prophylactic and therapeutic efficacy of memantine against seizures produced by soman in the rat. Toxicol Appl Pharmacol 112:95–103

    PubMed  CAS  Google Scholar 

  • Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P (1999) Differences in degree of trapping of low-affinity uncompetitive N-methyl-d-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 288:204–210

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1993) Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 3:405–412

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Turski L, Schwarz M, Czuczwar SJ, Sontag KH (1986) Anticonvulsant action of 1,3-dimethyl-5-aminoadamantane. Pharmacological studies in rodents and baboon Papio papio. Naunyn Schmiedebergs Arch Pharmacol 332:93–97

    PubMed  CAS  Google Scholar 

  • Mewasingh LD, Sekhara T, Aeby A, Christiaens FJ, Dan B (2003) Oral ketamine in paediatric non-convulsive status epilepticus. Seizure 12:483–489

    PubMed  CAS  Google Scholar 

  • Mikati MA, Injibar H, Kurdi RM, El Hokayem J, Abou Rialy S, Lteif L, Abdul Jawad M, Francis E, Geha G, Farhat F (2006) Effects of magnesium sulfate in kainic acid-induced status epilepticus. J Med Liban 54:200–204

    PubMed  Google Scholar 

  • Mikolasova R, Velisek L, Vorlicek J, Mares P (1994) Developmental changes of ketamine action against epileptic afterdischarges induced by hippocampal stimulation in rats. Brain Res Dev Brain Res 81:105–112

    PubMed  CAS  Google Scholar 

  • Morrow AL, Devaud LL, Bucci D, Smith FD (1994) GABAA and NMDA receptor subunit mRNA expression in ethanol dependent rats. Alcohol Alcohol Suppl 2:89–95

    PubMed  CAS  Google Scholar 

  • Myslobodsky MS, Golovchinsky V, Mintz M (1981) Ketamine: convulsant or anti-convulsant? Pharmacol Biochem Behav 14:27–33

    PubMed  CAS  Google Scholar 

  • Nathan BR, Smith TL, Bleck TP (2002) The use of ketamine in the treatment of refractory status epilepticus. Neurology Suppl 3:A197

    Google Scholar 

  • Navarro V, Le Van Quyen M, Martinerie J, Rudrauf D, Baulac M, Menini C (2007) Loss of phase synchrony in an animal model of partial status epilepticus. Neuroscience 148:304–313

    PubMed  CAS  Google Scholar 

  • Neder L, Valente V, Carlotti CG Jr, Leite JP, Assirati JA, Paco-Larson ML, Moreira JE (2002) Glutamate NMDA receptor subunit R1 and GAD mRNA expression in human temporal lobe epilepsy. Cell Mol Neurobiol 22:689–698

    PubMed  CAS  Google Scholar 

  • Nehlig A, Boehrer A (2003) Effects of remacemide in two models of genetically determined generalized epilepsy, the GAERS and the audiogenic Wistar AS. Epilepsy Res 52:253–261

    PubMed  CAS  Google Scholar 

  • Nevander G, Ingvar M, Auer R et al (1985) Status epilepticus in welloxygenated rats causes neuronal necrosis. Ann Neurol 18:281–290

    Google Scholar 

  • Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y (2001) Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominantnegative manner. J Neurosci 21:RC185

    Google Scholar 

  • Norris SK, King AE (1997) Electrophysiological effects of the anticonvulsant remacemide hydrochloride and its metabolite ARL 12495AA on rat CA1 hippocampal neurons in vitro. Neuropharmacology 36:951–959

    PubMed  CAS  Google Scholar 

  • Owen L, Cresswell P, Gifford C, McDade G, Mawer G (1992) Influence of remacemide on EEG in chronic epilepsy. Epilepsy 1:7

    Google Scholar 

  • Pachernegg S, Strutz-Seebohm N, Hollmann M (2012) GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci 35:240–249

    PubMed  CAS  Google Scholar 

  • Palmer GC, Borrelli AR, Hudzik TJ, Sparber S (1998) Acute heat stress model of seizures in weanling rats: influence of prototypic anti-seizure compounds. Epilepsy Res 30:203–217

    PubMed  CAS  Google Scholar 

  • Palmer GC, Murray RJ, Wilson TC, Eisman MS, Ray RK, Griffith RC, Napier JJ, Fedorchuk M, Stagnitto ML, Garske GE (1992) Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Epilepsy Res 12:9–20

    PubMed  CAS  Google Scholar 

  • Palmer GC, Stagnitto ML, Ordy JM, Griffith RC, Napiera JJ, Gentile RJ, Woodhead JH, White HS, Swinyard EA (1991) Preclinical profile of stereoisomers of the anticonvulsant remacemide in mice. Epilepsy Res 8:36–48

    PubMed  CAS  Google Scholar 

  • Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258

    PubMed  CAS  Google Scholar 

  • Peltz G, Pacific DM, Noviasky JA, Shatla A, Mehalic T (2005) Seizures associated with memantine use. Am J Health Syst Pharm 62:420–421

    PubMed  Google Scholar 

  • Perez-Otano I, Schulties CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF (2001) Assembly with NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21:175–218

    Google Scholar 

  • Pratt GD, Kokaia M, Bengzon J, Kokaia Z, Fritschy JM, Mohler H, Lindvall O (1993) Differential regulation of N-methyl-D-aspartate receptor subunit messenger RNAs in kindling-induced epileptogenesis. Neuroscience 57:307–318

    PubMed  CAS  Google Scholar 

  • Pruss H, Holtkamp M (2008) Ketamine successfully terminates malignant status epilepticus. Epilepsy Res 82:219–222

    PubMed  Google Scholar 

  • Pumain R, Louvel J, Gastard M, Kurcewicz I, Vergnes M (1992) Responses to N-methyl-D-aspartate are enhanced in rats with petit mal-like seizures. J Neural Transm Suppl 35:97–108

    PubMed  CAS  Google Scholar 

  • Randall RE Jr, Rossmeisl EC, Bleifer KH (1959) Magnesium depletion in man. Ann Intern Med 50:257–287

    PubMed  CAS  Google Scholar 

  • Ray R, Julien R, Gordon J, Blosser J (1992) FPL 12495, a metabolite of remacemide, is a noncompetitive NMDA antagonist. Soc Neurosci Abstr 17:391

    Google Scholar 

  • Reder BS, Trapp LD, Troutman KC (1980) Ketamine suppression of chemically induced convulsions in the two-day-old white leghorn cockerel. Anesth Analg 59:406–409

    PubMed  CAS  Google Scholar 

  • Reis J, John D, Heimeroth A, Mueller HH, Oertel WH, Arndt T, Rosenow F (2006) Modulation of human motor cortex excitability by single doses of amantadine. Neuropsychopharmacology 31:2758–2766

    PubMed  CAS  Google Scholar 

  • Rho JM, Donevan SD, Rogawski MA (1994) Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and gamma-aminobutyric acidA receptors. Ann Neurol 35:229–234

    PubMed  CAS  Google Scholar 

  • Richter A, Fredow G, Loscher W (1991) Antidystonic effects of the NMDA receptor antagonists memantine, MK-801 and CGP 37849 in a mutant hamster model of paroxysmal dystonia. Neurosci Lett 133:57–60

    PubMed  CAS  Google Scholar 

  • Rohrbacher J, Bijak M, Misgeld U (1994) Suppression by memantine and amantadine of synaptic excitation intrastriatally evoked in rat neostriatal slices. Neurosci Lett 182:95–98

    PubMed  CAS  Google Scholar 

  • Sachdeo R, Kramer LD, Rosenberg A, Sachdeo S (1992) Felbamate monotherapy: controlled trial in patients with partial onset seizures. Ann Neurol 32:386–392

    PubMed  CAS  Google Scholar 

  • Sadeh M, Blatt I, Martonovits G, Karni A, Goldhammer Y (1991) Treatment of porphyric convulsions with magnesium sulfate. Epilepsia 32:712–715

    PubMed  CAS  Google Scholar 

  • Safar MM, Abdallah DM, Arafa NM, Abdel-Aziz MT (2010) Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats. Brain Res 1334:58–64

    PubMed  CAS  Google Scholar 

  • Sagratella S, Frank C, de Carolis AS (1987) Effects of ketamine and (+)cyclazocine on 4-aminopyridine and “magnesium free” epileptogenic activity in hippocampal slices of rats. Neuropharmacology 26:1181–1184

    PubMed  CAS  Google Scholar 

  • Santangeli S, Sills GJ, Thompson GG, Brodie MJ (2002) Na+ channel effects of remacemide and desglycinyl-remacemide in rat cortical synaptosomes. Eur J Pharmacol 438:63–68

    PubMed  CAS  Google Scholar 

  • Schachter SC (2007) Currently available antiepileptic drugs. Neurotherapeutics 4:4–11

    PubMed  CAS  Google Scholar 

  • Schachter SC (2009) Seizure disorders. Med Clin North Am 93:343–351

    Google Scholar 

  • Schwab RS, England AC Jr (1969) Amantadine HCL (Symmetrel) and its relation to Levo-Dopa in the treatment of Parkinson’s disease. Trans Am Neurol Assoc 94:85–90

    PubMed  CAS  Google Scholar 

  • Serrano S, Hughes D, Chandler K (2006) Use of ketamine for the management of refractory status epilepticus in a dog. J Vet Intern Med 20:194–197

    PubMed  Google Scholar 

  • Shahar EM, Brand N (1992) Effect of add-on amantadine therapy for refractory absence epilepsy. J Pediatr 121:819–821

    PubMed  CAS  Google Scholar 

  • Sheth RD, Gidal BE (1998) Refractory status epilepticus: response to ketamine. Neurology 51:1765–1766

    PubMed  CAS  Google Scholar 

  • Shields WD, Lake JL, Chugani HT (1985) Amantadine in the treatment of refractory epilepsy in childhood: an open trial in 10 patients. Neurology 35:579–581

    PubMed  CAS  Google Scholar 

  • Shih T, McDonough JH Jr, Koplovitz I (1999) Anticonvulsants for soman-induced seizure activity. J Biomed Sci 6:86–96

    PubMed  CAS  Google Scholar 

  • Sinert R, Zehtabchi S, Desai S, Peacock P, Altura BT, Altura BM (2007) Serum ionized magnesium and calcium levels in adult patients with seizures. Scand J Clin Lab Invest 67:317–326

    PubMed  CAS  Google Scholar 

  • Sofia RD, Gordon R, Gels M, Diamantis W (1994) Comparative effects of felbamate and other compounds on N-methyl-d-aspartic acid-induced convulsions and lethality in mice. Pharmacol Res 29:139–144

    PubMed  CAS  Google Scholar 

  • Stafstrom CE, Sasaki-Adams DM (2003) NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 53:129–137

    PubMed  CAS  Google Scholar 

  • Stagnitto ML, Palmer GC, Ordy JM, Griffith RC, Napier JJ, Becker CN, Gentile RJ, Garske GE, Frankenheim JM, Woodhead JH et al (1990) Preclinical profile of remacemide: a novel anticonvulsant effective against maximal electroshock seizures in mice. Epilepsy Res 7:11–28

    PubMed  CAS  Google Scholar 

  • Stefani A, Calabresi P, Pisani A, Mercuri NB, Siniscalchi A, Bernardi G (1996) Felbamate inhibits dihydropyridine-sensitive calcium channels in central neurons. J Pharmacol Exp Ther 277:121–127

    PubMed  CAS  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1997) Voltage-Activated Calcium Channels: Targets of Antiepileptic Drug Therapy? Epilepsia 38:959–965

    PubMed  CAS  Google Scholar 

  • Stephenson FA (2006) Structure and trafficking of NMDA and GABAA receptors. Biochem Soc Trans 34:877–881

    PubMed  CAS  Google Scholar 

  • Subramaniam S, Donevan SD, Rogawski MA (1993) 1.2-Diphenyl-2-propylamine. A major metabolite of the anti-convulsant remacemide, produces a stereoselective block of NMDA receptor currents. Soc Neurosci Abstr 19:717

    Google Scholar 

  • Subramaniam S, Rho JM, Penix L, Donevan SD, Fielding RP, Rogawski MA (1995) Felbamate block of the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther 273:878–886

    PubMed  CAS  Google Scholar 

  • Taberner PV (1976) The anticonvulsant activity of ketamine agains siezures induced by pentylenetetrazol and mercaptopropionic acid. Eur J Pharmacol 39:305–311

    PubMed  CAS  Google Scholar 

  • Taglialatela M, Ongini E, Brown AM, Di Renzo G, Annunziato L (1996) Felbamate inhibits cloned voltage-dependent Na+ channels from human and rat brain. Eur J Pharmacol 316:373–377

    PubMed  CAS  Google Scholar 

  • Taylor RL (1981) Magnesium sulfate for AIP seizures. Neurology 31:1371–1372

    PubMed  CAS  Google Scholar 

  • Theodore WH, Raubertas RF, Porter RJ, Nice F, Devinsky O, Reeves P, Bromfield E, Ito B, Balish M (1991) Felbamate: a clinical trial for complex partial seizures. Epilepsia 32:392–397

    PubMed  CAS  Google Scholar 

  • Thompson GE (1972) Ketamine-induced convulsions. Anesthesiology 37:662–663

    PubMed  CAS  Google Scholar 

  • Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD (1989) The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol 167:127–135

    PubMed  CAS  Google Scholar 

  • Trommer BL, Pasternak JF (1990) NMDA receptor antagonists inhibit kindling epileptogenesis and seizure expression in developing rats. Brain Res Dev Brain Res 53:248–252

    PubMed  CAS  Google Scholar 

  • Tso EL, Barish RA (1992) Magnesium: clinical considerations. J Emerg Med 10:735–745

    PubMed  CAS  Google Scholar 

  • Turner TL, Cockburn F, Forfar JO (1977) Magnesium therapy in neonatal tetany. Lancet 1:283–284

    PubMed  CAS  Google Scholar 

  • Ubogu EE, Sagar SM, Lerner AJ, Maddux BN, Suarez JI, Werz MA (2003) Ketamine for refractory status epilepticus: a case of possible ketamine-induced neurotoxicity. Epilepsy Behav 4:70–75

    PubMed  Google Scholar 

  • Urbanska E, Dziki M, Czuczwar SJ, Kleinrok Z, Turski WA (1992) Antiparkinsonian drugs memantine and trihexyphenidyl potentiate the anticonvulsant activity of valproate against maximal electroshock-induced seizures. Neuropharmacology 31:1021–1026

    PubMed  CAS  Google Scholar 

  • Urbanska EM, Czuczwar SJ, Kleinrok Z, Turski WA (1998) Excitatory amino acids in epilepsy. Restor Neurol Neurosci 13:25–39

    PubMed  CAS  Google Scholar 

  • Vamvakides A (1990) Are there glutamatergic, anti-GABAergic or antiglycinergic components in the action mechanism of adamantamines? Study of convulsions induced by amantadine or 1-adamantylcyclopentanamine in mice. Ann Pharm Fr 48:312–320

    PubMed  CAS  Google Scholar 

  • van Luijtelaar EL, Coenen AM (1995) Effects of remacemide and its metabolite FPL 12495 on spike-wave discharges, electroencephalogram and behaviour in rats with absence epilepsy. Neuropharmacology 34:419–425

    PubMed  Google Scholar 

  • Vataev SI, Zhabko EP, Lukomskaia N, Oganesian GA, Magazanik LG (2009) Effects of memantine on convulsive reactions and sleep-waking cycle in Krushinskii-Molodkina strain rats with the inherited predisposition to audiogenic convulsions. Ross Fiziol Zh Im I M Sechenova 95:802–812

    PubMed  CAS  Google Scholar 

  • Vataev SI, Zhabko EP, Lukomskaya NY, Oganesyan GA, Magazanik LG (2010) Effects of memantine on convulsive reactions and the organization of sleep in krushinskii-molodkina rats with an inherited predisposition to audiogenic convulsions. Neurosci Behav Physiol 40:913–919

    PubMed  CAS  Google Scholar 

  • Velisek L, Mikolasova R, Blankova-Vankova S, Mares P (1989) Effects of ketamine on metrazol-induced seizures during ontogenesis in rats. Pharmacol Biochem Behav 32:405–410

    PubMed  CAS  Google Scholar 

  • Velisek L, Vondrickova R, Mares P (1993) Models of simple partial and absence seizures in freely moving rats: action of ketamine. Pharmacol Biochem Behav 45:889–896

    PubMed  CAS  Google Scholar 

  • Veliskova J, Velisek L, Mares P, Rokyta R (1990) Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis. Pharmacol Biochem Behav 37:667–674

    PubMed  CAS  Google Scholar 

  • Vermoesen K, Smolders I, Massie A, Michotte Y, Clinckers R (2010) The control of kainic acid-induced status epilepticus. Epilepsy Res 90:164–166

    PubMed  Google Scholar 

  • Visser NA, Braun KP, Leijten FS, van Nieuwenhuizen O, Wokke JH, van den Bergh WM (2011) Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J Neurol 258:218–222

    PubMed  CAS  Google Scholar 

  • Wardley-Smith B, Little HJ, Halsey MJ (1988) Lack of correlation between the anaesthetic and anti-convulsant potencies of althesin, ketamine and methohexitone. Br J Anaesth 60:140–145

    PubMed  CAS  Google Scholar 

  • White HS, Harmsworth WL, Sofia RD, Wolf HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20:41–48

    PubMed  CAS  Google Scholar 

  • White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB (2001) Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 49:67–78

    PubMed  CAS  Google Scholar 

  • Wurpel JN, Sperber EF, Moshe SL (1992) Age-dependent differences in the anticonvulsant effects of 2-amino-7-phosphono-heptanoic acid or ketamine infusions into the substantia nigra of rats. Epilepsia 33:439–443

    PubMed  CAS  Google Scholar 

  • Yao YN, Mayer ML (2006) Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 26:4559–4566

    PubMed  CAS  Google Scholar 

  • Zaja-Milatovic S, Gupta RC, Aschner M, Milatovic D (2009) Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist. Toxicol Appl Pharmacol 240:124–131

    PubMed  CAS  Google Scholar 

  • Zhang CL, Gloveli T, Heinemann U (1994) Effects of NMDA- and AMPA-receptor antagonists on different forms of epileptiform activity in rat temporal cortex slices. Epilepsia 35(Suppl 5):S68–S73

    PubMed  Google Scholar 

  • Zou LP, Wang X, Dong CH, Chen CH, Zhao W, Zhao RY (2010) Three-week combination treatment with ACTH + magnesium sulfate versus ACTH monotherapy for infantile spasms: a 24-week, randomized, open-label, follow-up study in China. Clin Ther 32:692–700

    PubMed  CAS  Google Scholar 

  • Zupanc ML, Roell Werner R, Schwabe MS, O’Connor SE, Marcuccilli CJ, Hecox KE, Chico MS, Eggener KA (2010) Efficacy of felbamate in the treatment of intractable pediatric epilepsy. Pediatr Neurol 42:396–403

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghasemi, M., Dehpour, A.R. (2014). Targeting NMDA Receptors in Epilepsy. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_32

Download citation

Publish with us

Policies and ethics