Skip to main content

Role of L-Type Ca2+ Channels in Sensory Cells

  • Chapter
  • First Online:
Book cover Pathologies of Calcium Channels

Abstract

L-type Ca2+ channels play an important role in sensory cells present in the inner ear and the retina. Cav1.3 predominates in sensory cells of the inner ear (inner and outer cochlear hair cells and vestibular hair cells) and Cav1.4 in retinal neurons. Their pore-forming α1-subunits are highly homologous but functionally heterogeneous. Such variability is ensured either by differential interaction with modulatory proteins (such as Ca2+-binding proteins), differences in alternative splicing, posttranslational modification (RNA-editing) or in subunit composition. We will discuss special structural features that stabilize properties required for proper function in these cells and allow fine-tuning of Ca2+ signals. Whereas so far only one Cav1.3 human disease mutation has been published more than 50 mutations have been reported for Cav1.4. Cav1.3 channels are currently discussed as molecular target for neuroprotection in Parkinsons Disease. Are their regulatory mechanisms also interesting for potential pharmacotherapeutic modulation? How do loss- and gain-of-function mutations on the protein level both result in impaired retinal synaptic transmission in patients carrying these mutations? We will summarize our current knowledge about the role of L-type channels for human hearing and visual disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almanza A, Vega R, Soto E (2003) Calcium current in type I hair cells isolated from the semicircular canal crista ampullaris of the rat. Brain Res 994:175–180

    PubMed  CAS  Google Scholar 

  • Arman AC, Sampath AP (2012) Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina. J Neurophysiol 107:2649–2659

    PubMed  Google Scholar 

  • Astori S, Wimmer RD, Prosser HM et al (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828

    PubMed  CAS  Google Scholar 

  • Bader CR, MacLeish PR, Schwartz EA (1978) Responses to light of solitary rod photoreceptors isolated from tiger salamander retina. Proc Natl Acad Sci USA 75:3507–3511

    PubMed  CAS  Google Scholar 

  • Baig SM, Koschak A, Lieb A et al (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14:77–84

    PubMed  CAS  Google Scholar 

  • Ball SL, Powers PA, Shin H-S et al (2002) Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43:1595–1603

    PubMed  Google Scholar 

  • Bao H, Wong WH, Goldberg JM, Eatock RA (2003) Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista. J Neurophysiol 90:155–164

    PubMed  CAS  Google Scholar 

  • Bartoletti TM, Jackman SL, Babai N et al (2011) Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels. J Neurophysiol 106:2922–2935

    PubMed  CAS  Google Scholar 

  • Bauer CS, Tran-Van-Minh A, Kadurin I, Dolphin AC (2010) A new look at calcium channel α2δ subunits. Curr Opin Neurobiol 20:563–571

    PubMed  CAS  Google Scholar 

  • Bech-Hansen NT, Naylor MJ, Maybaum TA et al (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    PubMed  CAS  Google Scholar 

  • Berntson A, Taylor WR, Morgans CW (2003) Molecular identity, synaptic localization, and physiology of calcium channels in retinal bipolar cells. J Neurosci Res 71:146–151

    PubMed  CAS  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599

    PubMed  CAS  Google Scholar 

  • Bloomfield S a, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384

    PubMed  CAS  Google Scholar 

  • Bloomfield SA (2001) Plasticity of AII amacrine cell circuitry in the mammalian retina. Prog Brain Res 131:185–200

    PubMed  CAS  Google Scholar 

  • Bock G, Gebhart M, Scharinger A et al (2011) Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels. J Biol Chem 286:42736–42748

    PubMed  CAS  Google Scholar 

  • Bodis-Wollner I (1980) Detection of visual defects using the contrast sensitivity function. Int Ophthalmol Clin 20:135–153

    PubMed  CAS  Google Scholar 

  • Boycott KM, Maybaum TA, Naylor MJ et al (2001) A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet 108:91–97

    PubMed  CAS  Google Scholar 

  • Boycott KM, Pearce WG, Bech-Hansen NT (2000) Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can J Ophthalmol 35:204–213

    PubMed  CAS  Google Scholar 

  • Boycott KM, Pearce WG, Musarella MA et al (1998) Evidence for genetic heterogeneity in X-linked congenital stationary night blindness. Am J Hum Genet 62:865–875

    PubMed  CAS  Google Scholar 

  • Boyer C, Lehouelleur J, Sans A (1998) Potassium depolarization of mammalian vestibular sensory cells increases [Ca2+]i through voltage-sensitive calcium channels. Eur J Neurosci 10:971–975

    PubMed  CAS  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) Cav1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    PubMed  CAS  Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    PubMed  CAS  Google Scholar 

  • Buraei Z, Yang J (2010) The ß subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506

    PubMed  CAS  Google Scholar 

  • Busquet P, Nguyen NK, Schmid E et al (2010) Cav1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype. Int J Neuropsychopharmacol 13:499–513

    PubMed  CAS  Google Scholar 

  • Calin-Jageman I, Lee A (2008) Ca(v)1 L-type Ca2+ channel signaling complexes in neurons. J Neurochem 105:573–583

    PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    PubMed  CAS  Google Scholar 

  • Chang B, Heckenlively JR, Bayley PR et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24

    PubMed  Google Scholar 

  • Cristofanilli M, Mizuno F, Akopian A (2007) Disruption of actin cytoskeleton causes internalization of Ca(v)1.3 (alpha 1D) L-type calcium channels in salamander retinal neurons. Mol Vis 13:1496–1507

    PubMed  CAS  Google Scholar 

  • Cui G, Meyer AC, Calin-Jageman I et al (2007) Ca2+ -binding proteins tune Ca2+ -feedback to Cav1.3 channels in mouse auditory hair cells. J Physiol (Lond) 585:791–803

    CAS  Google Scholar 

  • Danecek P, Nellåker C, McIntyre RE et al (2012) High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol 13:26

    PubMed  CAS  Google Scholar 

  • Demb JB, Pugh EN (2002) Connexin36 forms synapses essential for night vision. Neuron 36:551–553

    PubMed  CAS  Google Scholar 

  • Demb JB, Singer JH (2012) Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci 29:51–60

    PubMed  Google Scholar 

  • Doering CJ, Rehak R, Bonfield S et al (2008) Modified Ca(v)1.4 expression in the Cacna1f(nob2) mouse due to alternative splicing of an ETn inserted in exon 2. PLoS ONE 3:e2538

    PubMed  Google Scholar 

  • Dou H, Vazquez AE, Namkung Y et al (2004) Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 5:215–226

    PubMed  Google Scholar 

  • Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13:7–21

    CAS  Google Scholar 

  • Erickson MG, Liang H, Mori MX, Yue DT (2003) FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39:97–107

    PubMed  CAS  Google Scholar 

  • Firth SI, Morgan IG, Boelen MK, Morgans CW (2001) Localization of voltage-sensitive L-type calcium channels in the chicken retina. Clin Experiment Ophthalmol 29:183–187

    PubMed  CAS  Google Scholar 

  • Gebhart M, Juhasz-Vedres G, Zuccotti A et al (2010) Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule. Mol Cell Neurosci 44:246–259

    PubMed  CAS  Google Scholar 

  • Glueckert R, Wietzorrek G, Kammen-Jolly K et al (2003) Role of class D L-type Ca2+ channels for cochlear morphology. Hear Res 178:95–105

    PubMed  CAS  Google Scholar 

  • Goutman JD (2012) Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies. J Neurosci 32:17025–17035a

    PubMed  CAS  Google Scholar 

  • Grant L, Fuchs P (2008) Calcium- and calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea. J Neurophysiol 99:2183–2193

    PubMed  Google Scholar 

  • Gregory FD, Bryan KE, Pangršič T et al (2011) Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells. Nat Neurosci 14:1109–1111

    PubMed  CAS  Google Scholar 

  • Grimes WN, Li W, Chávez AE, Diamond JS (2009) BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat Neurosci 12:585–592

    PubMed  CAS  Google Scholar 

  • Grimes WN, Zhang J, Graydon CW et al (2010) Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron. Neuron 65:873–885

    PubMed  CAS  Google Scholar 

  • Gu Y, Wang L, Zhou J et al (2008) A naturally-occurring mutation in Cacna1f in a rat model of congenital stationary night blindness. Mol Vis 14:20–28

    PubMed  CAS  Google Scholar 

  • Haeseleer F, Imanishi Y, Maeda T et al (2004) Essential role of Ca2+ -binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7:1079–1087

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Matthews G (1994) Dopamine enhances Ca2+ responses in synaptic terminals of retinal bipolar neurons. NeuroReport 5:729–732

    PubMed  CAS  Google Scholar 

  • Hemara-Wahanui A, Berjukow S, Hope CI et al (2005) A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci U S A 102:7553–7558

    PubMed  CAS  Google Scholar 

  • Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol (Lond) 524(Pt 1):179–194

    CAS  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O et al (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34:411–423

    PubMed  CAS  Google Scholar 

  • Hirtz JJ, Boesen M, Braun N et al (2011) Cav1.3 calcium channels are required for normal development of the auditory brainstem. J Neurosci 31:8280–8294

    PubMed  CAS  Google Scholar 

  • Hirtz JJ, Braun N, Griesemer D et al (2012) Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional Cav1.3 calcium channels. J Neurosci 32:14602–14616

    PubMed  CAS  Google Scholar 

  • Hoda J-C, Zaghetto F, Koschak A, Striessnig J (2005) Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 25:252–259

    PubMed  CAS  Google Scholar 

  • Hoda J-C, Zaghetto F, Singh A et al (2006) Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on Cav1.4 L-type Ca2+ channel function and expression. J Neurochem 96:1648–1658

    PubMed  CAS  Google Scholar 

  • Hope CI, Sharp DM, Hemara-Wahanui A et al (2005) Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clinical & experimental ophthalmology 33:129–136

    Google Scholar 

  • Huang H, Tan BZ, Shen Y et al (2012) RNA editing of the IQ domain in Ca(v)1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73:304–316

    PubMed  CAS  Google Scholar 

  • Jacobson LB (1969) Cluster headache: a rare cause of bradycardia. Headache 8:159–161

    PubMed  CAS  Google Scholar 

  • Jalkanen R, Bech-Hansen NT, Tobias R et al (2007) A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48:2498–2502

    PubMed  Google Scholar 

  • Jalkanen R, Mäntyjärvi M, Tobias R et al (2006) X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43:699–704

    PubMed  CAS  Google Scholar 

  • Karali M, Peluso I, Gennarino VA et al (2010) miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 11:715

    PubMed  CAS  Google Scholar 

  • Karali M, Peluso I, Marigo V, Banfi S (2007) Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci 48:509–515

    PubMed  Google Scholar 

  • Karpen JW, Loney D a, Baylor D a (1992) Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. J Physiol (Lond) 448:257–274

    CAS  Google Scholar 

  • Kersten FFJ, Van Wijk E, Van Reeuwijk J et al (2010) Association of whirlin with Cav1.3 (alpha1D) channels in photoreceptors, defining a novel member of the usher protein network. Invest Ophthalmol Vis Sci 51:2338–2346

    PubMed  Google Scholar 

  • Kim D, Song I, Keum S et al (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca2+ channels. Neuron 31:35–45

    PubMed  CAS  Google Scholar 

  • Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    PubMed  CAS  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T et al (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    PubMed  CAS  Google Scholar 

  • Ko GY-P, Ko M, Dryer SE (2004) Circadian and cAMP-dependent modulation of retinal cone cGMP-gated channels does not require protein synthesis or calcium influx through L-type channels. Brain Res 1021:277–280

    PubMed  CAS  Google Scholar 

  • Ko ML, Liu Y, Shi L et al (2008) Circadian regulation of retinoschisin in the chick retina. Invest Ophthalmol Vis Sci 49:1615–1621

    PubMed  Google Scholar 

  • Koike C, Numata T, Ueda H et al (2010) TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 48:95–101

    PubMed  CAS  Google Scholar 

  • Kollmar R, Montgomery LG, Fak J et al (1997) Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 94:14883–14888

    PubMed  CAS  Google Scholar 

  • Korenbrot JI (2012) Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 31:442–466

    PubMed  Google Scholar 

  • Koschak A (2010) Impact of gating modulation in Cav1.3 L-type calcium channels. Channels (Austin) 4:523–525

    CAS  Google Scholar 

  • Koschak A, Reimer D, Huber I et al (2001) alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106

    PubMed  CAS  Google Scholar 

  • Koschak A, Reimer D, Walter D et al (2003) Cav1.4alpha1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+ -dependent inactivation. J Neurosci 23:6041–6049

    PubMed  CAS  Google Scholar 

  • Kuhn S, Knirsch M, Rüttiger L et al (2009) Ba2+ currents in inner and outer hair cells of mice lacking the voltage-dependent Ca2+ channel subunits beta3 or beta4. Channels (Austin) 3:366–376

    CAS  Google Scholar 

  • Lieb A, Scharinger A, Sartori S et al (2012) Structural determinants of Cav1.3 L-type calcium channel gating. Channels (Austin) 6:197–205

    CAS  Google Scholar 

  • Lipscombe D (2002) L-type calcium channels: highs and new lows. Circ Res 90:933–935

    PubMed  CAS  Google Scholar 

  • Liu X, Yang PS, Yang W, Yue DT (2010) Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin. Nature 463:968–972

    PubMed  CAS  Google Scholar 

  • Maeda T, Lem J, Palczewski K, Haeseleer F (2005) A critical role of CaBP4 in the cone synapse. Invest Ophthalmol Vis Sci 46:4320–4327

    PubMed  Google Scholar 

  • Magupalli VG, Schwarz K, Alpadi K et al (2008) Multiple RIBEYE–RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. J Neurosci 28:7954–7967

    PubMed  CAS  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 100:5543–5548

    PubMed  CAS  Google Scholar 

  • Mangoni ME, Traboulsie A, Leoni A-L et al (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430

    PubMed  CAS  Google Scholar 

  • Mansergh F, Orton NC, Vessey JP et al (2005) Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 14:3035–3046

    PubMed  CAS  Google Scholar 

  • Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    PubMed  CAS  Google Scholar 

  • Marcantoni A, Baldelli P, Hernandez-Guijo JM et al (2007) L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. Cell Calcium 42:397–408

    PubMed  CAS  Google Scholar 

  • Marcantoni A, Vandael DHF, Mahapatra S et al (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504

    PubMed  CAS  Google Scholar 

  • Marmor MF (1986) Contrast sensitivity versus visual acuity in retinal disease. Br J Ophthalmol 70:553–559

    PubMed  CAS  Google Scholar 

  • Marmorstein LY, Wu J, McLaughlin P et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127:577–589

    PubMed  CAS  Google Scholar 

  • Masu M, Iwakabe H, Tagawa Y et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765

    PubMed  CAS  Google Scholar 

  • McRory JE, Hamid J, Doering CJ et al (2004) The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 24:1707–1718

    PubMed  CAS  Google Scholar 

  • Mercer AJ, Chen M, Thoreson WB (2011) Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 31:4397–4406

    PubMed  CAS  Google Scholar 

  • Mercer AJ, Thoreson WB (2011) The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis Neurosci 28:453–471

    PubMed  Google Scholar 

  • Meyer AC, Frank T, Khimich D et al (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453

    PubMed  CAS  Google Scholar 

  • Meyer AC, Moser T (2010) Structure and function of cochlear afferent innervation. Curr Opin Otolaryngol Head Neck Surg 18:441–446

    PubMed  Google Scholar 

  • Michna M, Knirsch M, Hoda J-C et al (2003) Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol (Lond) 553:747–758

    CAS  Google Scholar 

  • Miller WH, Nicol GD (1979) Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature 280:64–66

    CAS  Google Scholar 

  • Mizuno F, Barabas P, Krizaj D, Akopian A (2010) Glutamate-induced internalization of Ca(v)1.3 L-type Ca2+ channels protects retinal neurons against excitotoxicity. J Physiol (Lond) 588:953–966

    CAS  Google Scholar 

  • Morgans CW (1999) Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 11:2989–2993

    PubMed  CAS  Google Scholar 

  • Morgans CW (2001) Localization of the alpha(1F) calcium channel subunit in the rat retina. Invest Ophthalmol Vis Sci 42:2414–2418

    PubMed  CAS  Google Scholar 

  • Morgans CW, Bayley PR, Oesch NW et al (2005) Photoreceptor calcium channels: insight from night blindness. Vis Neurosci 22:561–568

    PubMed  Google Scholar 

  • Morgans CW, Gaughwin P, Maleszka R (2001) Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina. Mol Vis 7:202–209

    PubMed  CAS  Google Scholar 

  • Müller CS, Haupt A, Bildl W et al (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 107:14950–14957

    PubMed  Google Scholar 

  • Müller M, Von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    PubMed  Google Scholar 

  • Neef J, Gehrt A, Bulankina AV et al (2009) The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J Neurosci 29:10730–10740

    PubMed  CAS  Google Scholar 

  • Obermair GJ, Szabo Z, Bourinet E, Flucher BE (2004) Differential targeting of the L-type Ca2+ channel alpha 1C (Cav1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur J Neurosci 19:2109–2122

    PubMed  Google Scholar 

  • Oliver D, Knipper M, Derst C, Fakler B (2003) Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23:2141–2149

    PubMed  CAS  Google Scholar 

  • Olson PA, Tkatch T, Hernandez-Lopez S et al (2005) G-protein-coupled receptor modulation of striatal Cav1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 25:1050–1062

    PubMed  CAS  Google Scholar 

  • Peloquin JB, Doering CJ, Rehak R, McRory JE (2008) Temperature dependence of Cav1.4 calcium channel gating. Neuroscience 151:1066–1083

    PubMed  CAS  Google Scholar 

  • Peloquin JB, Rehak R, Doering CJ, McRory JE (2007) Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049 W. Neuroscience 150:335–345

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Van Petegem F, Chatelain FC, Minor DL (2005) Insights into voltage-gated calcium channel regulation from the structure of the Cav1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol 12:1108–1115

    PubMed  Google Scholar 

  • Peterson BZ, Lee JS, Mulle JG et al (2000) Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys J 78:1906–1920

    PubMed  CAS  Google Scholar 

  • Pfeiffer RF (2010) Parkinson disease: calcium channel blockers and Parkinson disease. Nat Rev Neurol 6:188–189

    PubMed  CAS  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    PubMed  CAS  Google Scholar 

  • Putzier I, Kullmann PHM, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419

    PubMed  CAS  Google Scholar 

  • Ramakrishnan NA, Drescher MJ, Drescher DG (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav1.3. J Biol Chem 284:1364–1372

    PubMed  CAS  Google Scholar 

  • Rosenthal R, Bakall B, Kinnick T et al (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20:178–180

    CAS  Google Scholar 

  • Roux I, Safieddine S, Nouvian R et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    PubMed  CAS  Google Scholar 

  • Safieddine S, El-Amraoui A, Petit C (2012) The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 35:509–528

    PubMed  CAS  Google Scholar 

  • Satheesh SV, Kunert K, Rüttiger L et al (2012) Retrocochlear function of the peripheral deafness gene Cacna1d. Hum Mol Genet 21:3896–3909

    PubMed  CAS  Google Scholar 

  • Schrauwen I, Helfmann S, Inagaki A et al (2012) A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am J Hum Genet 91:636–645

    PubMed  CAS  Google Scholar 

  • Seeliger MW, Brombas A, Weiler R et al (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2:532

    PubMed  Google Scholar 

  • Shaltiel L, Paparizos C, Fenske S et al (2012) Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+ -binding protein 4 (CaBP4). J Biol Chem 287:36312–36321

    PubMed  CAS  Google Scholar 

  • Shcheglovitov A, Vitko I, Lazarenko RM et al (2012) Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Ca(v)2.3 calcium channels. J Gen Physiol 139:219–234

    PubMed  CAS  Google Scholar 

  • Sheets L, Trapani JG, Mo W et al (2011) Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development 138:1309–1319

    PubMed  CAS  Google Scholar 

  • Shen Y, Yu D, Hiel H et al (2006) Alternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+ -dependent inactivation within auditory hair cells. J Neurosci 26:10690–10699

    PubMed  CAS  Google Scholar 

  • Shi L, Jian K, Ko ML et al (2009a) Retinoschisin, a new binding partner for L-type voltage-gated calcium channels in the retina. J Biol Chem 284:3966–3975

    PubMed  CAS  Google Scholar 

  • Shi L, Ko ML, Ko GY-P (2009b) Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem 284:25791–25803

    PubMed  CAS  Google Scholar 

  • Simonsz HJ, Florijn RJ, Van Minderhout HM et al (2009) Nightblindness-associated transient tonic downgaze (NATTD) in infant boys with chin-up head posture. Strabismus 17:158–164

    PubMed  CAS  Google Scholar 

  • Singh A, Gebhart M, Fritsch R et al (2008) Modulation of voltage- and Ca2+ -dependent gating of Cav1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J Biol Chem 283:20733–20744

    PubMed  CAS  Google Scholar 

  • Song H, Nie L, Rodriguez-Contreras A et al (2003) Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. J Neurophysiol 89:1143–1149

    PubMed  CAS  Google Scholar 

  • Soucy E, Wang Y, Nirenberg S et al (1998) A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21:481–493

    PubMed  CAS  Google Scholar 

  • Specht D, Wu S-B, Turner P et al (2009) Effects of presynaptic mutations on a postsynaptic Cacna1 s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 50:505–515

    PubMed  Google Scholar 

  • Specht SC, Sweadner KJ (1984) Two different Na, K-ATPases in the optic nerve: cells of origin and axonal transport. Proc Natl Acad Sci USA 81:1234–1238

    PubMed  CAS  Google Scholar 

  • Stockner T, Koschak A (2013) What can naturally occurring mutations tell us about Cav1.x channel function? Biochim Biophys Acta 1828:1598–1607

    PubMed  CAS  Google Scholar 

  • Strettoi E, Dacheux RF, Raviola E (1990) Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J Comp Neurol 295:449–466

    PubMed  CAS  Google Scholar 

  • Striessnig J (2007) C-terminal tailoring of L-type calcium channel function. J Physiol (Lond) 585:643–644

    CAS  Google Scholar 

  • Striessnig J, Bolz HJ, Koschak A (2010) Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pfl{ü}gers Archive: European journal of physiology 460:361–374

    Google Scholar 

  • Striessnig J, Koschak A (2008) Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels (Austin) 2:233–251

    Google Scholar 

  • Strom TM, Nyakatura G, Apfelstedt-Sylla E et al (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2011) The origins of oxidant stress in Parkinson’s disease and therapeutic strategies. Antioxid Redox Sig 14:1289–1301

    CAS  Google Scholar 

  • Tadross MR, Dick IE, Yue DT (2008) Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133:1228–1240

    PubMed  CAS  Google Scholar 

  • Tan GMY, Yu D, Wang J, Soong TW (2012) Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. J Biol Chem 287:832–847

    PubMed  CAS  Google Scholar 

  • Taylor WR, Morgans C (1998) Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 15:541–552

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R (2004) A highly Ca2+ -sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42:595–605

    PubMed  CAS  Google Scholar 

  • tom Dieck S, Altrock WD, Kessels MM, et al. (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–36

    Google Scholar 

  • tom Dieck S, Brandstätter JH (2006) Ribbon synapses of the retina. Cell Tissue Res 326:339–46

    Google Scholar 

  • Tremblay F, Laroche RG, De Becker I (1995) The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vision Res 35:2383–2393

    PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Morigiwa K, Ueda M, Sterling P (2001) Microcircuits for night vision in mouse retina. J Neurosci 21:8616–8623

    PubMed  CAS  Google Scholar 

  • Wahl-Schott C, Baumann L, Cuny H et al (2006) Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain. Proc Natl Acad Sci U S A 103:15657–15662

    PubMed  CAS  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F et al (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    PubMed  CAS  Google Scholar 

  • Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    PubMed  Google Scholar 

  • Welch NC, Wood S, Jollimore C et al (2005) High-voltage-activated calcium channels in Muller cells acutely isolated from tiger salamander retina. Glia 49:259–274

    PubMed  Google Scholar 

  • Wu J, Marmorstein AD, Striessnig J, Peachey NS (2007) Voltage-dependent calcium channel Cav1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol 97:3731–3735

    PubMed  CAS  Google Scholar 

  • Wycisk KA, Budde B, Feil S et al (2006) Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523–3530

    PubMed  Google Scholar 

  • Xiao H, Chen X, Steele EC (2007) Abundant L-type calcium channel Ca(v)1.3 (alpha1D) subunit mRNA is detected in rod photoreceptors of the mouse retina via in situ hybridization. Mol Vis 13:764–771

    PubMed  CAS  Google Scholar 

  • Yang PS, Alseikhan BA, Hiel H et al (2006) Switching of Ca2+ -dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells. J Neurosci 26:10677–10689

    PubMed  CAS  Google Scholar 

  • Yu K, Xiao Q, Cui G et al (2008) The best disease-linked Cl- channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci 28:5660–5670

    PubMed  CAS  Google Scholar 

  • Zampini V, Johnson SL, Franz C et al (2010) Elementary properties of Cav1.3 Ca2+ channels expressed in mouse cochlear inner hair cells. J Physiol (Lond) 588:187–199

    CAS  Google Scholar 

  • Zamponi GW (2003) Calmodulin lobotomized: novel insights into calcium regulation of voltage-gated calcium channels. Neuron 39:879–881

    PubMed  Google Scholar 

  • Zeitz C, Kloeckener-Gruissem B, Forster U et al (2006) Mutations in CABP4, the gene encoding the Ca2+ -binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet 79:657–667

    PubMed  CAS  Google Scholar 

  • Zheng L, Yan Y, An J et al (2012) Retinal horizontal cells reduced in a rat model of congenital stationary night blindness. Neurosci Lett 521:26–30

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra Koschak or Jörg Striessnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koschak, A., Pinggera, A., Schicker, K., Striessnig, J. (2014). Role of L-Type Ca2+ Channels in Sensory Cells. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_3

Download citation

Publish with us

Policies and ethics