Skip to main content

IP3 Receptors in Neurodegenerative Disorders: Spinocerebellar Ataxias and Huntington’s and Alzheimer’s Diseases

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

Modulation of intracellular calcium concentration is a ubiquitous signaling system involved in numerous biological processes in diverse cell types. Alterations of intracellular calcium homeostasis have been implicated in age-related neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and spinocerebellar ataxias (SCAs). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), calcium release channels in the ER membrane, play a key role in regulating intracellular calcium concentration. IP3R type 1 (IP3R1), a major neuronal type of IR3R, is expressed ubiquitously and is involved in diverse biological processes. Cerebellar Purkinje cells are mainly affected by alterations in IP3R1. Heterozygous deletion or missense mutations in ITPR1, the IP3R1 gene, result in autosomal dominantly inherited ataxias, including SCA type 15 or 29. In addition, mutations in carbonic anhydrase-related protein VIII, which suppresses the binding ability of IP3 to IP3R1, cause recessively, inherited ataxia. These results indicate that IP3R1-mediated calcium signaling has an important role in maintaining the function of Purkinje cells. Moreover, cytosolic calcium overload with excessive IP3R1 activity has been implicated in pathogenesis of other neurodegenerative diseases, including SCA type 2, SCA type 3, Huntington’s disease, and Alzheimer’s disease, where dysregulation of IP3R1-mediated calcium signaling may link to the pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid β

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATXN2:

Ataxin-2

ATXN3:

Ataxin-3

CAMRQ3:

Cerebellar ataxia and mental retardation with or without quadrupedal locomotion 3

CARP:

Carbonic anhydrase-related protein VIII

ER:

Endoplasmic reticulum

HAP1:

Htt-associated protein1

HD:

Huntington’s disease

Htt:

Huntingtin

mHtt:

Mutant huntingtin

IP3 :

Inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

IP3R1:

Inositol 1,4,5-trisphosphate receptor type 1

LTD:

Long-term depression

mGluR:

Metabotropic glutamate receptors

MSN:

Medium spiny neuron

nAChR:

Nicotinic acetylcholine receptor

NCX:

Sodium-calcium exchanger

NMDA:

N-methyl-d-aspartic acid

PMCA:

Plasma membrane calcium ATPase

PS:

Presenilin

RyR:

Ryanodine receptor

SCA:

Spinocerebellar ataxia

SERCA:

Sarco-/endoplasmic reticulum calcium ATPase

SUMF1:

Sulfatase modifying factor 1

VGCC:

Voltage-gated calcium channel

References

  • Albrecht M, Golatta M, Wullner U, Lengauer T (2004) Structural and functional analysis of ataxin-2 and ataxin-3. Eur J Biochem 271:3155–3170

    PubMed  CAS  Google Scholar 

  • Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806

    PubMed  CAS  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90:567–571

    PubMed  CAS  Google Scholar 

  • Bataller L, Sabater L, Saiz A, Serra C, Claramonte B, Graus F (2004) Carbonic anhydrase-related protein VIII: autoantigen in paraneoplastic cerebellar degeneration. Ann Neurol 56:575–579

    PubMed  CAS  Google Scholar 

  • Bauer PO, Hudec R, Ozaki S, Okuno M, Ebisui E, Mikoshiba K, Nukina N (2011) Genetic ablation and chemical inhibition of IP3R1 reduce mutant huntingtin aggregation. Biochem Biophys Res Commun 416:13–17

    PubMed  CAS  Google Scholar 

  • Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459:441–449

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I (2005) The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:261–272

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I (2011) Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias. Neurochem Res 36:1186–1197

    PubMed  CAS  Google Scholar 

  • Bezprozvanny IB (2010) Calcium signaling and neurodegeneration. Acta Naturae 2:72–82

    PubMed  CAS  Google Scholar 

  • Bonelli RM, Beal MF (2012) Huntington’s disease. Handb Clin Neurol 106:507–526

    PubMed  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    PubMed  Google Scholar 

  • Cai C, Lin P, Cheung KH et al (2006) The presenilin-2 loop peptide perturbs intracellular Ca2+ homeostasis and accelerates apoptosis. J Biol Chem 281:16649–16655

    PubMed  CAS  Google Scholar 

  • Castrioto A, Prontera P, Di Gregorio E et al (2011) A novel spinocerebellar ataxia type 15 family with involuntary movements and cognitive decline. Eur J Neurol 18:1263–1265

    PubMed  CAS  Google Scholar 

  • Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29:9458–9470

    PubMed  CAS  Google Scholar 

  • Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200

    PubMed  CAS  Google Scholar 

  • Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724

    PubMed  CAS  Google Scholar 

  • Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I (2011) Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegener 6:81

    PubMed  Google Scholar 

  • Cheung KH, Shineman D, Muller M et al (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58:871–883

    PubMed  CAS  Google Scholar 

  • Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20:7258–7267

    PubMed  CAS  Google Scholar 

  • Ciosk R, DePalma M, Priess JR (2004) ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 131:4831–4841

    PubMed  CAS  Google Scholar 

  • Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445–456

    PubMed  CAS  Google Scholar 

  • Costa Mdo C, Paulson HL (2012) Toward understanding Machado-Joseph disease. Prog Neurobiol 97:239–257

    PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    PubMed  Google Scholar 

  • Di Gregorio E, Orsi L, Godani M et al (2010) Two Italian families with IP3R1 gene deletion presenting a broader phenotype of SCA15. Cerebellum 9:115–123

    PubMed  Google Scholar 

  • Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292

    PubMed  CAS  Google Scholar 

  • Finch EA, Tanaka K, Augustine GJ (2012) Calcium as a trigger for cerebellar long-term synaptic depression. Cerebellum 11:706–717

    PubMed  CAS  Google Scholar 

  • Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063

    PubMed  CAS  Google Scholar 

  • Foskett JK (2010) Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch 460:481–494

    PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    PubMed  CAS  Google Scholar 

  • Fujii S, Matsumoto M, Igarashi K, Kato H, Mikoshiba K (2000) Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn Mem 7:312–320

    PubMed  CAS  Google Scholar 

  • Furuichi T, Kohda K, Miyawaki A, Mikoshiba K (1994) Intracellular channels. Curr Opin Neurobiol 4:294–303

    PubMed  CAS  Google Scholar 

  • Ganesamoorthy D, Bruno DL, Schoumans J et al (2009) Development of a multiplex ligation-dependent probe amplification assay for diagnosis and estimation of the frequency of spinocerebellar ataxia type 15. Clin Chem 55:1415–1418

    PubMed  CAS  Google Scholar 

  • Gardner RJ, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E (2005) Spinocerebellar ataxia type 15. Cerebellum 4:47–50

    PubMed  CAS  Google Scholar 

  • Giannakopoulos P, Kovari E, Gold G, von Gunten A, Hof PR, Bouras C (2009) Pathological substrates of cognitive decline in Alzheimer’s disease. Front Neurol Neurosci 24:20–29

    PubMed  Google Scholar 

  • Goto J, Mikoshiba K (2011) Inositol 1,4,5-trisphosphate receptor-mediated calcium release in Purkinje cells: from molecular mechanism to behavior. Cerebellum 10:820–833

    PubMed  CAS  Google Scholar 

  • Haacke A, Hartl FU, Breuer P (2007) Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. J Biol Chem 282:18851–18856

    PubMed  CAS  Google Scholar 

  • Hanley JG (2006) Molecular mechanisms for regulation of AMPAR trafficking by PICK1. Biochem Soc Trans 34:931–935

    PubMed  CAS  Google Scholar 

  • Hara K, Fukushima T, Suzuki T et al (2004) Japanese SCA families with an unusual phenotype linked to a locus overlapping with SCA15 locus. Neurology 62:648–651

    PubMed  CAS  Google Scholar 

  • Hara K, Shiga A, Nozaki H et al (2008) Total deletion and a missense mutation of IP3R1 in Japanese SCA15 families. Neurology 71:547–551

    PubMed  CAS  Google Scholar 

  • Hartmann J, Konnerth A (2005) Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium 37:459–466

    PubMed  CAS  Google Scholar 

  • Hermes M, Eichhoff G, Garaschuk O (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14:30–41

    PubMed  CAS  Google Scholar 

  • Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T, Mikoshiba K (2010) Mechanism of ER stress-induced brain damage by IP(3) receptor. Neuron 68:865–878

    PubMed  CAS  Google Scholar 

  • Hirota J, Ando H, Hamada K, Mikoshiba K (2003) Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372:435–441

    PubMed  CAS  Google Scholar 

  • Hisatsune C, Kuroda Y, Akagi T, Torashima T, Hirai H, Hashikawa T, Inoue T, Mikoshiba K (2006) Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J Neurosci 26:10916–10924

    PubMed  CAS  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    PubMed  CAS  Google Scholar 

  • Huang L, Warman J, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, Zou R, Schofield PW, Douglas S, Bulman DE, Boycott KM (2012) Missense mutations in IP3R1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67

    PubMed  Google Scholar 

  • Huynh DP, Figueroa K, Hoang N, Pulst SM (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26:44–50

    PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373

    PubMed  CAS  Google Scholar 

  • Ito E, Oka K, Etcheberrigaray R, Nelson TJ, McPhie DL, Tofel-Grehl B, Gibson GE, Alkon DL (1994) Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A 91:534–538

    PubMed  CAS  Google Scholar 

  • Itoh S, Ito K, Fujii S, Kaneko K, Kato K, Mikoshiba K, Kato H (2001) Neuronal plasticity in hippocampal mossy fiber-CA3 synapses of mice lacking the inositol-1,4,5-trisphosphate type 1 receptor. Brain Res 901:237–246

    PubMed  CAS  Google Scholar 

  • Iwaki A, Kawano Y, Miura S et al (2008) Heterozygous deletion of IP3R1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35

    PubMed  CAS  Google Scholar 

  • Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, Roe BA, Ledoux MS, Gu W (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246

    PubMed  CAS  Google Scholar 

  • Kaltenbach LS, Romero E, Becklin RR et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3:e82

    PubMed  Google Scholar 

  • Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I (2012) Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci 32:12786–12796

    PubMed  CAS  Google Scholar 

  • Kaya N, Aldhalaan H, Al-Younes B et al (2011) Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet 156B:826–834

    PubMed  Google Scholar 

  • Knight MA, Kennerson ML, Anney RJ, Matsuura T, Nicholson GA, Salimi-Tari P, Gardner RJ, Storey E, Forrest SM (2003) Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter: exclusion of the IP3R1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis 13:147–157

    PubMed  CAS  Google Scholar 

  • Kozlov G, Safaee N, Rosenauer A, Gehring K (2010) Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem 285:13599–13606

    PubMed  CAS  Google Scholar 

  • Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59:214–225

    PubMed  CAS  Google Scholar 

  • La Spada AR, Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11:247–258

    PubMed  Google Scholar 

  • LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    PubMed  CAS  Google Scholar 

  • Lastres-Becker I, Rub U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    PubMed  CAS  Google Scholar 

  • Lee G, Pollard HB, Arispe N (2002) Annexin 5 and apolipoprotein E2 protect against Alzheimer’s amyloid-beta-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 23:1249–1263

    PubMed  CAS  Google Scholar 

  • Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 72:1061–1068

    PubMed  CAS  Google Scholar 

  • Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    PubMed  CAS  Google Scholar 

  • Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162

    PubMed  CAS  Google Scholar 

  • Magana JJ, Velazquez-Perez L, Cisneros B (2012) Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 47(1):90–104

    Google Scholar 

  • Marelli C, van de Leemput J, Johnson JO et al (2011) SCA15 due to large IP3R1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643

    PubMed  Google Scholar 

  • Matsumoto M, Nagata E (1999) Type 1 inositol 1,4,5-trisphosphate receptor knock-out mice: their phenotypes and their meaning in neuroscience and clinical practice. J Mol Med (Berl) 77:406–411

    CAS  Google Scholar 

  • Matsumoto M, Nakagawa T, Inoue T et al (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379:168–171

    PubMed  CAS  Google Scholar 

  • McGurk L, Bonini NM (2012) Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Hum Mol Genet 21:76–84

    PubMed  Google Scholar 

  • Michikawa T, Miyawaki A, Furuichi T, Mikoshiba K (1996) Inositol 1,4,5-trisphosphate receptors and calcium signaling. Crit Rev Neurobiol 10:39–55

    PubMed  CAS  Google Scholar 

  • Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    PubMed  CAS  Google Scholar 

  • Mikoshiba K, Furuichi T, Miyawaki A et al (1993) Structure and function of inositol 1,4,5-trisphosphate receptor. Ann N Y Acad Sci 707:178–197

    PubMed  CAS  Google Scholar 

  • Miura S, Shibata H, Furuya H et al (2006) The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology 67:1236–1241

    PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    PubMed  CAS  Google Scholar 

  • Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T (2007) A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 14:332–340

    PubMed  CAS  Google Scholar 

  • Nagase T, Ito KI, Kato K, Kaneko K, Kohda K, Matsumoto M, Hoshino A, Inoue T, Fujii S, Kato H, Mikoshiba K (2003) Long-term potentiation and long-term depression in hippocampal CA1 neurons of mice lacking the IP(3) type 1 receptor. Neuroscience 117:821–830

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Maeda N, Mikoshiba K (1991) Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain. J Neurosci 11:2075–2086

    PubMed  CAS  Google Scholar 

  • Neuwald AF, Koonin EV (1998) Ataxin-2, global regulators of bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. J Mol Med (Berl) 76:3–5

    CAS  Google Scholar 

  • Nimmrich V, Grimm C, Draguhn A et al (2008) Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

    PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588

    PubMed  CAS  Google Scholar 

  • Novak MJ, Sweeney MG, Li A et al (2010) An IP3R1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord 25:2176–2182

    PubMed  Google Scholar 

  • Nucifora FCJ, Li SH, Danoff S, Ullrich A, Ross CA (1995) Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res 32:291–296

    PubMed  CAS  Google Scholar 

  • Ogura H, Matsumoto M, Mikoshiba K (2001) Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res 122:215–219

    PubMed  CAS  Google Scholar 

  • Paulson H (2012) Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 103:437–449

    PubMed  Google Scholar 

  • Paulson HL, Perez MK, Trottier Y et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    PubMed  CAS  Google Scholar 

  • Pulst SM, Santos N, Wang D, Yang H, Huynh D, Velazquez L, Figueroa KP (2005) Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain 128:2297–2303

    PubMed  Google Scholar 

  • Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S (2005a) An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 346:203–214

    PubMed  CAS  Google Scholar 

  • Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, Krobitsch S (2005b) Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet 14:2893–2909

    PubMed  CAS  Google Scholar 

  • Rybalchenko V, Hwang SY, Rybalchenko N, Koulen P (2008) The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 40:84–97

    PubMed  CAS  Google Scholar 

  • Satterfield TF, Jackson SM, Pallanck LJ (2002) A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. Genetics 162:1687–1702

    PubMed  CAS  Google Scholar 

  • Satterfield TF, Pallanck LJ (2006) Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 15:2523–2532

    PubMed  CAS  Google Scholar 

  • Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 13:2535–2543

    PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    PubMed  CAS  Google Scholar 

  • Sharp AH, Nucifora FCJ, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    PubMed  CAS  Google Scholar 

  • Shibata H, Huynh DP, Pulst SM (2000) A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet 9:1303–1313

    PubMed  CAS  Google Scholar 

  • Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94:1711–1718

    PubMed  CAS  Google Scholar 

  • Stevanin G, Durr A, Brice A (2000) Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 8:4–18

    PubMed  CAS  Google Scholar 

  • Storey E, Gardner RJ, Knight MA, Kennerson ML, Tuck RR, Forrest SM, Nicholson GA (2001) A new autosomal dominant pure cerebellar ataxia. Neurology 57:1913–1915

    PubMed  CAS  Google Scholar 

  • Street VA, Bosma MM, Demas VP, Regan MR, Lin DD, Robinson LC, Agnew WS, Tempel BL (1997) The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 17:635–645

    PubMed  CAS  Google Scholar 

  • Stutzmann GE (2005) Calcium dysregulation, IP3 signaling, and Alzheimer’s disease. Neuroscientist 11:110–115

    PubMed  CAS  Google Scholar 

  • Stutzmann GE, Caccamo A, LaFerla FM, Parker I (2004) Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci 24:508–513

    PubMed  CAS  Google Scholar 

  • Stutzmann GE, Mattson MP (2011) Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 63:700–727

    PubMed  CAS  Google Scholar 

  • Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26:5180–5189

    PubMed  CAS  Google Scholar 

  • Supnet C, Bezprozvanny I (2011) Presenilins as endoplasmic reticulum calcium leak channels and Alzheimer’s disease pathogenesis. Sci China Life Sci 54:744–751

    PubMed  CAS  Google Scholar 

  • Synofzik M, Beetz C, Bauer C et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48:407–412

    PubMed  Google Scholar 

  • Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180–191

    PubMed  CAS  Google Scholar 

  • Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I (2009) Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. J Neurosci 29:1257–1266

    PubMed  CAS  Google Scholar 

  • Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 102:2602–2607

    PubMed  CAS  Google Scholar 

  • Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    PubMed  CAS  Google Scholar 

  • Tang TS, Tu H, Orban PC, Chan EY, Hayden MR, Bezprozvanny I (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci 20:1779–1787

    PubMed  Google Scholar 

  • Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    PubMed  CAS  Google Scholar 

  • Taylor CW, da Fonseca PC, Morris EP (2004) IP(3) receptors: the search for structure. Trends Biochem Sci 29:210–219

    PubMed  CAS  Google Scholar 

  • Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    PubMed  CAS  Google Scholar 

  • Tsuji S, Onodera O, Goto J, Nishizawa M (2008) Sporadic ataxias in Japan–a population-based epidemiological study. Cerebellum 7:189–197

    PubMed  CAS  Google Scholar 

  • Tu H, Miyakawa T, Wang Z, Glouchankova L, Iino M, Bezprozvanny I (2002) Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(±) splice variants and the Opisthotonos mutant form. Biophys J 82:1995–2004

    PubMed  CAS  Google Scholar 

  • Turkmen S, Guo G, Garshasbi M et al (2009) CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5:e1000487

    PubMed  Google Scholar 

  • van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at IP3R1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108

    PubMed  Google Scholar 

  • van de Loo S, Eich F, Nonis D, Auburger G, Nowock J (2009) Ataxin-2 associates with rough endoplasmic reticulum. Exp Neurol 215:110–118

    PubMed  Google Scholar 

  • Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64(Suppl 9):7–10

    PubMed  Google Scholar 

  • Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528

    PubMed  CAS  Google Scholar 

  • Yamada M, Sato T, Tsuji S, Takahashi H (2008) CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol 115:71–86

    PubMed  CAS  Google Scholar 

  • Yamada M, Tsuji S, Takahashi H (2000) Pathology of CAG repeat diseases. Neuropathology 20:319–325

    PubMed  CAS  Google Scholar 

  • Yamada N, Makino Y, Clark RA et al (1994) Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J 302:781–790

    PubMed  CAS  Google Scholar 

  • Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K (2011) Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun 410:754–758

    PubMed  CAS  Google Scholar 

  • Yoo AS, Cheng I, Chung S et al (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (C) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a Grant-in-Aid for the Research Committee for Ataxic Diseases from the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Onodera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tada, M., Nishizawa, M., Onodera, O. (2014). IP3 Receptors in Neurodegenerative Disorders: Spinocerebellar Ataxias and Huntington’s and Alzheimer’s Diseases. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_28

Download citation

Publish with us

Policies and ethics