Skip to main content

Pharmacology of TRPV Channels

  • Chapter
  • First Online:
Pathologies of Calcium Channels
  • 1436 Accesses

Abstract

From a pharmacological point of view, the transient receptor potential (TRPV) family of ion channels are interesting drug targets. After the identification of the TRPV1 channel, an attractive candidate for analgesic intervention, many agonists and antagonists were generated. Although TRPV1 modifying drugs partially induce serious side effects, several efforts are still under development. There is growing evidence that also the other thermo-gated TRPs are promising drug targets. Most interestingly, mutations within the TRPV4 gene are causing many skeletal dysplasias underlining the importance of the function of this ion channel. Another interesting channel, TRPV6, was shown to be up-regulated in a few malignancies including breast and prostate cancer. Several data show that the overexpression of TRPV6 contributes to an aggressive cancel cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahern GP, Brooks IM, Miyares RL, Wang XB (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25(21):5109–5116

    PubMed  CAS  Google Scholar 

  • Ahern GP, Wang X, Miyares RL (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281(13):8991–8995

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39(3):497–511

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24(18):4444–4452

    PubMed  CAS  Google Scholar 

  • Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42(2):160–164

    PubMed  CAS  Google Scholar 

  • Axelsson HE, Minde JK, Sonesson A, Toolanen G, Hogestatt ED, Zygmunt PM (2009) Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience 162(4):1322–1332

    PubMed  CAS  Google Scholar 

  • Bang S, Kim KY, Yoo S, Lee SH, Hwang SW (2007) Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 425(2):120–125

    PubMed  CAS  Google Scholar 

  • Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, Zhuang L, Freeman MR, Gouveia CH, Wu J, Luo H, Mauro T, Brown EM, Hediger MA (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22(2):274–285

    PubMed  CAS  Google Scholar 

  • Bodding M, Fecher-Trost C, Flockerzi V (2003) Store-operated Ca2+ current and TRPV6 channels in lymph node prostate cancer cells. J Biol Chem 278(51):50872–50879

    PubMed  Google Scholar 

  • Boels K, Glassmeier G, Herrmann D, Riedel IB, Hampe W, Kojima I, Schwarz JR, Schaller HC (2001) The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca(2+)-permeable channel GRC. J Cell Sci 114(Pt 20):3599–3606

    PubMed  CAS  Google Scholar 

  • Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7(2):271–279

    PubMed  CAS  Google Scholar 

  • Bolanz KA, Kovacs GG, Landowski CP, Hediger MA (2009) Tamoxifen inhibits TRPV6 activity via estrogen receptor-independent pathways in TRPV6-expressing MCF-7 breast cancer cells. Mol Cancer Res 7(12):2000–2010

    PubMed  CAS  Google Scholar 

  • Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci USA 104(24):10246–10251

    PubMed  CAS  Google Scholar 

  • Buchholz CF (1816) Chemische Untersuchung der trockenen reifen spanischen Pfeffers, vol 37. Weimar

    Google Scholar 

  • Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 152A(5):1169–1177

    PubMed  CAS  Google Scholar 

  • Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51(12):2252–2262

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    PubMed  CAS  Google Scholar 

  • Charrua A, Cruz CD, Narayanan S, Gharat L, Gullapalli S, Cruz F, Avelino A (2009) GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J Urol 181(1):379–386

    PubMed  CAS  Google Scholar 

  • Chizh BA, Sang CN (2009) Use of sensory methods for detecting target engagement in clinical trials of new analgesics. Neurotherapeutics 6(4):749–754

    PubMed  CAS  Google Scholar 

  • Cho TJ, Matsumoto K, Fano V, Dai J, Kim OH, Chae JH, Yoo WJ, Tanaka Y, Matsui Y, Takigami I, Monges S, Zabel B, Shimizu K, Nishimura G, Lausch E, Ikegawa S (2012) TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 158A(4):795–802

    PubMed  Google Scholar 

  • Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278(34):32037–32046

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004a) 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24(22):5177–5182

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004b) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279(20):21569–21575

    PubMed  CAS  Google Scholar 

  • Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O (2010) Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci 51(11):6001–6008

    PubMed  Google Scholar 

  • Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, Marsh K, Bianchi B, McDonald H, Niforatos W, Neelands TR, Moreland RB, Decker MW, Lee CH, Sullivan JP, Faltynek CR (2006) TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci 26(37):9385–9393

    PubMed  CAS  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See CG, Costigan M, Anand P, Woolf CJ, Crowther D, Sanseau P, Tate SN (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4(3):165–174

    PubMed  CAS  Google Scholar 

  • Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42(2):165–169

    PubMed  CAS  Google Scholar 

  • Dimke H, Hoenderop JG, Bindels RJ (2011) Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol 589(Pt 7):1535–1542

    PubMed  CAS  Google Scholar 

  • Earley S (2005) Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle. Microcirculation 17(4):237–249

    Google Scholar 

  • Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci USA 107(44):19084–19089

    PubMed  CAS  Google Scholar 

  • Fian R, Grasser E, Treiber F, Schmidt R, Niederl P, Rosker C (2007) The contribution of TRPV4-mediated calcium signaling to calcium homeostasis in endothelial cells. J Recept Signal Transduct Res 27(2–3):113–124

    PubMed  CAS  Google Scholar 

  • Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22(49):7858–7861

    PubMed  CAS  Google Scholar 

  • Franzius D, Hoth M, Penner R (1994) Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 428(5–6):433–438

    PubMed  CAS  Google Scholar 

  • Gavva NR (2008) Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 29(11):550–557

    PubMed  CAS  Google Scholar 

  • Gavva NR, Bannon AW, Hovland DN Jr, Lehto SG, Klionsky L, Surapaneni S, Immke DC, Henley C, Arik L, Bak A, Davis J, Ernst N, Hever G, Kuang R, Shi L, Tamir R, Wang J, Wang W, Zajic G, Zhu D, Norman MH, Louis JC, Magal E, Treanor JJ (2007a) Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 323(1):128–137

    PubMed  CAS  Google Scholar 

  • Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, Kuang R, Le A, Tamir R, Wang J, Youngblood B, Zhu D, Norman MH, Magal E, Treanor JJ, Louis JC (2007b) The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27(13):3366–3374

    PubMed  CAS  Google Scholar 

  • Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A, Alvarez F, Bak A, Darling M, Gore A, Jang GR, Kesslak JP, Ni L, Norman MH, Palluconi G, Rose MJ, Salfi M, Tan E, Romanovsky AA, Banfield C, Davar G (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136(1–2):202–210

    PubMed  CAS  Google Scholar 

  • Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117(11):3453–3462

    PubMed  CAS  Google Scholar 

  • Gomtsyan A, Bayburt EK, Schmidt RG, Surowy CS, Honore P, Marsh KC, Hannick SM, McDonald HA, Wetter JM, Sullivan JP, Jarvis MF, Faltynek CR, Lee CH (2008) Identification of (R)-1-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J Med Chem 51(3):392–395

    PubMed  CAS  Google Scholar 

  • Gregory RB, Rychkov G, Barritt GJ (2001) Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 354(Pt 2):285–290

    PubMed  CAS  Google Scholar 

  • Gu Q, Lin RL, Hu HZ, Zhu MX, Lee LY (2005) 2-aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels. Am J Physiol Lung Cell Mol Physiol 288(5):L932–L941

    PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414

    PubMed  CAS  Google Scholar 

  • Gullapalli TA, Lingam PR, Kattige V, Gudi GS, Khairatkar-Joshi N (2008) GRC 15133—a novel, selective TRPV3 antagonist with anti-hyperalgesic effects in inflammatory and neuropathic pain. CHI-World Pharmaceutical Congress, http://wwwglenmarkpharma-com/research

  • Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60(4):1002–1008

    PubMed  CAS  Google Scholar 

  • Hirnet D, Olausson J, Fecher-Trost C, Bodding M, Nastainczyk W, Wissenbach U, Flockerzi V, Freichel M (2003) The TRPV6 gene, cDNA and protein. Cell Calcium 33(5–6):509–518

    PubMed  CAS  Google Scholar 

  • Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274(13):8375–8378

    PubMed  CAS  Google Scholar 

  • Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, Nilius B (2001) Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol 537(Pt 3):747–761

    PubMed  CAS  Google Scholar 

  • Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St -Arnaud R, Bindels RJ (2002) Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. Faseb J 16(11):1398–1406

    Google Scholar 

  • Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112(12):1906–1914

    PubMed  CAS  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43(2):143–201

    PubMed  CAS  Google Scholar 

  • Holzer P (2008) The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 155(8):1145–1162. doi:10.1038/bjp.2008.351

    PubMed  CAS  Google Scholar 

  • Honore P, Chandran P, Hernandez G, Gauvin DM, Mikusa JP, Zhong C, Joshi SK, Ghilardi JR, Sevcik MA, Fryer RM, Segreti JA, Banfor PN, Marsh K, Neelands T, Bayburt E, Daanen JF, Gomtsyan A, Lee CH, Kort ME, Reilly RM, Surowy CS, Kym PR, Mantyh PW, Sullivan JP, Jarvis MF, Faltynek CR (2009) Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain 142(1–2):27–35

    PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279(34):35741–35748

    PubMed  CAS  Google Scholar 

  • Huang J, Zhang X, McNaughton PA (2006) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4(3):197–206

    PubMed  CAS  Google Scholar 

  • Ichikawa H, Fukunaga T, Jin HW, Fujita M, Takano-Yamamoto T, Sugimoto T (2004) VR1-, VRL-1- and P2X3 receptor-immunoreactive innervation of the rat temporomandibular joint. Brain Res 1008 (1):131–136

    Google Scholar 

  • Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels 7(6):429–439

    PubMed  CAS  Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161(5):957–967

    PubMed  CAS  Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18(5):824–834

    PubMed  CAS  Google Scholar 

  • Jones VM, Moore KA, Peterson DM (2011) Capsaicin 8% topical patch (Qutenza)—a review of the evidence. J Pain Palliat Care Pharmacother 25(1):32–41

    PubMed  Google Scholar 

  • Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279(8):7048–7054

    PubMed  CAS  Google Scholar 

  • Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1(3):165–170

    PubMed  CAS  Google Scholar 

  • Kitagawa Y, Miyai A, Usui K, Hamada Y, Deai K, Wada M, Koga Y, Sakata M, Hayashi M, Tominaga M, Matsushita M (2012a) Pharmacological characterization of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyrid in-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel transient receptor potential vanilloid 1 antagonist. J Pharmacol Exp Ther 342(2):520–528

    PubMed  CAS  Google Scholar 

  • Kitagawa Y, Wada M, Kanehisa T, Miyai A, Usui K, Maekawa M, Sakata M, Matsuo A, Hayashi M, Matsushita M (2012b) JTS-653, an orally active and selective TRPV1 antagonist, blocks the afferent nerve firing and attenuates bladder overactivity without affecting the normal voiding function. J Urol

    Google Scholar 

  • Klausen TK, Pagani A, Minassi A, Ech-Chahad A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Appendino G, Nilius B (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem 52(9):2933–2939

    PubMed  CAS  Google Scholar 

  • Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2010) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49(1):43–55

    PubMed  Google Scholar 

  • Kovacs G, Montalbetti N, Simonin A, Danko T, Balazs B, Zsembery A, Hediger MA (2012) Inhibition of the human epithelial calcium channel TRPV6 by 2-aminoethoxydiphenyl borate (2-APB). Cell Calcium

    Google Scholar 

  • Lambert GA, Davis JB, Appleby JM, Chizh BA, Hoskin KL, Zagami AS (2009) The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission. Naunyn Schmiedebergs Arch Pharmacol 380(4):311–325

    PubMed  CAS  Google Scholar 

  • Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42(2):170–174

    PubMed  CAS  Google Scholar 

  • Landowski CP, Bolanz KA, Suzuki Y, Hediger MA (2011) Chemical inhibitors of the calcium entry channel TRPV6. Pharm Res 28(2):322–330

    PubMed  CAS  Google Scholar 

  • Leffler A, Linte RM, Nau C, Reeh P, Babes A (2007) A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur J Neurosci 26(1):12–22

    PubMed  Google Scholar 

  • Lehen’kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26(52):7380–7385

    PubMed  Google Scholar 

  • Lehen’kyi V, Raphael M, Oulidi A, Flourakis M, Khalimonchyk S, Kondratskyi A, Gordienko DV, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2011) TRPV6 determines the effect of vitamin D3 on prostate cancer cell growth. PLoS ONE 6(2):e16856

    PubMed  Google Scholar 

  • Lehen’kyi V, Raphael M, Prevarskaya N (2012) The role of the TRPV6 channel in cancer. J Physiol 590(Pt 6):1369–1376

    PubMed  Google Scholar 

  • Lehto SG, Tamir R, Deng H, Klionsky L, Kuang R, Le A, Lee D, Louis JC, Magal E, Manning BH, Rubino J, Surapaneni S, Tamayo N, Wang T, Wang J, Wang J, Wang W, Youngblood B, Zhang M, Zhu D, Norman MH, Gavva NR (2008) Antihyperalgesic effects of (R, E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluorom ethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J Pharmacol Exp Ther 326(1):218–229

    PubMed  CAS  Google Scholar 

  • Lewinter RD, Skinner K, Julius D, Basbaum AI (2004) Immunoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in the spinal cord of the rat. J Comp Neurol 470(4):400–408

    PubMed  CAS  Google Scholar 

  • Liedtke W (2005) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 451(1):176–180

    PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100(23):13698–13703

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    PubMed  CAS  Google Scholar 

  • Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 100(Suppl 2):14531–14536

    PubMed  CAS  Google Scholar 

  • Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27(26):7070–7080

    PubMed  CAS  Google Scholar 

  • Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32(4):335–343

    PubMed  CAS  Google Scholar 

  • Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8(3):257–265

    PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    PubMed  CAS  Google Scholar 

  • Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298(2):H466–H476

    PubMed  CAS  Google Scholar 

  • Micko K (1898) Zur Kenntnisnahme des Capsaicins. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel 1:818–829

    Google Scholar 

  • Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216(1):47–53

    PubMed  CAS  Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285(1):C96–101

    PubMed  CAS  Google Scholar 

  • Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280(14):13424–13432

    PubMed  CAS  Google Scholar 

  • Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70(3):1225–1235

    PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    PubMed  CAS  Google Scholar 

  • Moran WD, Zhen X, Mandel-Brehm J, Witek J, Yaksh T, McCumber D, Zhao M, Chong JA, Fanger CM (2007) Potent and selective antagonists validate TRPV3 as a target for analgesic therapeutics. Soc Neurosci Abstr 33 (143.5)

    Google Scholar 

  • Moussaieff A, Rimmerman N, Bregman T, Straiker A, Felder CC, Shoham S, Kashman Y, Huang SM, Lee H, Shohami E, Mackie K, Caterina MJ, Walker JM, Fride E, Mechoulam R (2008) Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. Faseb J 22(8):3024–3034

    PubMed  CAS  Google Scholar 

  • Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93(9):829–838

    PubMed  CAS  Google Scholar 

  • Nagy JI, Iversen LL, Goedert M, Chapman D, Hunt SP (1983) Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat. J Neurosci 3(2):399–406

    PubMed  CAS  Google Scholar 

  • Nelson EK (1919) The constitution of capsaicin, the pungent principle of capsicum. J Am Chem Soc 41:1115–1121

    CAS  Google Scholar 

  • Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14(11):2731–2740

    PubMed  CAS  Google Scholar 

  • Nilius B, Voets T (2004) Diversity of TRP channel activation. Novartis Found Symp 258:140–149; discussion 149–159, 263–146

    Google Scholar 

  • Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G (2000) Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527(Pt 2):239–248

    PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G (2001a) Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol 134(3):453–462

    PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G (2001b) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443(2):227–233

    PubMed  CAS  Google Scholar 

  • Nishimura G, Dai J, Lausch E, Unger S, Megarbane A, Kitoh H, Kim OH, Cho TJ, Bedeschi F, Benedicenti F, Mendoza-Londono R, Silengo M, Schmidt-Rimpler M, Spranger J, Zabel B, Ikegawa S, Superti-Furga A (2010) Spondylo-epiphyseal dysplasia, Maroteaux type (pseudo-Morquio syndrome type 2), and parastremmatic dysplasia are caused by TRPV4 mutations. Am J Med Genet A 152A(6):1443–1449

    PubMed  Google Scholar 

  • Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR (1999) Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81(1–2):135–145

    PubMed  CAS  Google Scholar 

  • Othman AA, Nothaft W, Awni WM, Dutta S (2012) Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials. Br J Clin Pharmacol

    Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296(5575):2046–2049

    PubMed  CAS  Google Scholar 

  • Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274(32):22739–22746

    PubMed  CAS  Google Scholar 

  • Peng JB, Chen XZ, Berger UV, Weremowicz S, Morton CC, Vassilev PM, Brown EM, Hediger MA (2000) Human calcium transport protein CaT1. Biochem Biophys Res Commun 278(2):326–332

    PubMed  CAS  Google Scholar 

  • Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282(3):729–734

    PubMed  CAS  Google Scholar 

  • Peppin JF, Majors K, Webster LR, Simpson DM, Tobias JK, Vanhove GF (2011) Tolerability of NGX-4010, a capsaicin 8% patch for peripheral neuropathic pain. J Pain Res 4:385–392

    PubMed  CAS  Google Scholar 

  • Peters AA, Simpson PT, Bassett JJ, Lee JM, Da Silva L, Reid LE, Song S, Parat MO, Lakhani SR, Kenny PA, Roberts-Thomson SJ, Monteith GR (2012) Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor-negative breast cancer. Mol Cancer Ther 11(10):2158–2168

    PubMed  CAS  Google Scholar 

  • Premkumar LS, Qi ZH, Van Buren J, Raisinghani M (2004) Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J Neurophysiol 91(3):1442–1449

    PubMed  CAS  Google Scholar 

  • Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300(5623):1284–1288

    PubMed  CAS  Google Scholar 

  • Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238

    PubMed  CAS  Google Scholar 

  • Remadevi R, Szallisi A (2008) Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief. IDrugs 11(2):120–132

    PubMed  CAS  Google Scholar 

  • Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40(8):999–1003

    PubMed  CAS  Google Scholar 

  • Round P, Priestley A, Robinson J (2011) An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects. Br J Clin Pharmacol 72(6):921–931

    PubMed  CAS  Google Scholar 

  • Saper JR, Klapper J, Mathew NT, Rapoport A, Phillips SB, Bernstein JE (2002) Intranasal civamide for the treatment of episodic cluster headaches. Arch Neurol 59(6):990–994

    PubMed  Google Scholar 

  • Schnitzer TJ, Pelletier JP, Haselwood DM, Ellison WT, Ervin JE, Gordon RD, Lisse JR, Archambault WT, Sampson AR, Fezatte HB, Phillips SB, Bernstein JE (2012) Civamide cream 0.075% in patients with osteoarthritis of the knee: a 12-week randomized controlled clinical trial with a longterm extension. J Rheumatol 39(3):610–620

    PubMed  CAS  Google Scholar 

  • Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39(2):163–173

    PubMed  CAS  Google Scholar 

  • Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA (2009) Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol 296(5):C1098–C1104

    PubMed  CAS  Google Scholar 

  • Sherkheli MA, Gisselmann G, Hatt H (2012) Supercooling agent icilin blocks a warmth-sensing ion channel TRPV3. ScientificWorld J 2012:982725

    Google Scholar 

  • Sidhaye VK, Guler AD, Schweitzer KS, D’Alessio F, Caterina MJ, King LS (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci USA 103(12):4747–4752

    PubMed  CAS  Google Scholar 

  • Sidhaye VK, Schweitzer KS, Caterina MJ, Shimoda L, King LS (2008) Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc Natl Acad Sci USA 105(9):3345–3350

    PubMed  CAS  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894):186–190

    PubMed  CAS  Google Scholar 

  • Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281(40):29897–29904

    PubMed  CAS  Google Scholar 

  • Spath E, Darling SF (1930) Synthesis of capsaicin. Ber Dtsch Chem Ges 63B:737–740

    CAS  Google Scholar 

  • Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128(5):509–522. doi:10.1085/jgp.200609576

    PubMed  CAS  Google Scholar 

  • Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJ, Gavva NR, Romanovsky AA (2007) Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 27(28):7459–7468

    PubMed  CAS  Google Scholar 

  • Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE (2008) Citral sensing by transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS ONE 3(5):e2082

    PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702

    PubMed  CAS  Google Scholar 

  • Surowy CS, Neelands TR, Bianchi BR, McGaraughty S, El Kouhen R, Han P, Chu KL, McDonald HA, Vos M, Niforatos W, Bayburt EK, Gomtsyan A, Lee CH, Honore P, Sullivan JP, Jarvis MF, Faltynek CR (2008) (R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo. J Pharmacol Exp Ther 326(3):879–888

    PubMed  CAS  Google Scholar 

  • Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48(6):1857–1872

    PubMed  CAS  Google Scholar 

  • Szallasi A, Sheta M (2012) Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opin Investig Drugs 21(9):1351–1369

    PubMed  CAS  Google Scholar 

  • Tamayo N, Liao H, Stec MM, Wang X, Chakrabarti P, Retz D, Doherty EM, Surapaneni S, Tamir R, Bannon AW, Gavva NR, Norman MH (2008) Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J Med Chem 51(9):2744–2757

    PubMed  CAS  Google Scholar 

  • Tanaka R, Muraki K, Ohya S, Yamamura H, Hatano N, Itoh Y, Imaizumi Y (2008) TRPV4-like non-selective cation currents in cultured aortic myocytes. J Pharmacol Sci 108(2):179–189

    PubMed  CAS  Google Scholar 

  • Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M (2007) TRPV4 as a flow sensor in flow-dependent K + secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292(2):F667–F673

    PubMed  CAS  Google Scholar 

  • Taufiq AM, Fujii S, Yamazaki Y, Sasaki H, Kaneko K, Li J, Kato H, Mikoshiba K (2005) Involvement of IP3 receptors in LTP and LTD induction in guinea pig hippocampal CA1 neurons. Learn Mem 12(6):594–600

    PubMed  Google Scholar 

  • Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN (2008) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4(159):159ra148

    Google Scholar 

  • Thresh JC (1846) Isolation of capsaicin. Pharm J Trans 6(3):941–947

    Google Scholar 

  • Tian W, Fu Y, Garcia-Elias A, Fernandez–Fernandez JM, Vicente R, Kramer PL, Klein RF, Hitzemann R, Orwoll ES, Wilmot B, McWeeney S, Valverde MA, Cohen DM (2009) A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci USA 106(33):14034–14039

    PubMed  CAS  Google Scholar 

  • Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5(6):546–551

    PubMed  CAS  Google Scholar 

  • Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE (2011) Localization of the PIP2 sensor of TRPV1 ion channels. J Biol Chem 286(11):9688–9698

    PubMed  CAS  Google Scholar 

  • van der Eerden BC, Weissgerber P, Fratzl-Zelman N, Olausson J, Hoenderop JG, Schreuders-Koedam M, Eijken M, Roschger P, de Vries TJ, Chiba H, Klaushofer K, Flockerzi V, Bindels RJ, Freichel M, van Leeuwen JP (2011) The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice. J Cell Physiol 227(5):1951–1959

    Google Scholar 

  • Vassilev PM, Peng JB, Johnson J, Hediger MA, Brown EM (2001) Inhibition of CaT1 channel activity by a noncompetitive IP3 antagonist. Biochem Biophys Res Commun 280(1):145–150

    PubMed  CAS  Google Scholar 

  • Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275(6):3963–3969

    PubMed  CAS  Google Scholar 

  • Verma P, Kumar A, Goswami C (2010) TRPV4-mediated channelopathies. Channels (Austin) 4(4):319–328

    CAS  Google Scholar 

  • Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11(17):2216–2226

    PubMed  CAS  Google Scholar 

  • Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389(3):490–494

    PubMed  CAS  Google Scholar 

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277(37):33704–33710

    PubMed  CAS  Google Scholar 

  • Voets T, Janssens A, Prenen J, Droogmans G, Nilius B (2003) Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. J Gen Physiol 121(3):245–260

    PubMed  CAS  Google Scholar 

  • Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H (2007) Monoterpenoid agonists of TRPV3. Br J Pharmacol 151(4):530–540

    PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101(1):396–401

    PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282(17):12796–12803

    PubMed  CAS  Google Scholar 

  • Wallace M, Pappagallo M (2011) Qutenza(R): a capsaicin 8% patch for the management of postherpetic neuralgia. Expert Rev Neurother 11(1):15–27

    PubMed  CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277(16):13569–13577

    PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424(6947):434–438

    PubMed  CAS  Google Scholar 

  • Watanabe H, Murakami M, Ohba T, Ono K, Ito H (2009) The pathological role of transient receptor potential channels in heart disease. Circ J 73(3):419–427

    PubMed  CAS  Google Scholar 

  • Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Vennekens R, Wissenbach U, Middendorff R, Flockerzi V, Freichel M (2011) Male fertility depends on Ca(2)+ absorption by TRPV6 in epididymal epithelia. Sci Signal 4 (171):ra27

    Google Scholar 

  • Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O, Stoerger C, Mannebach S, Wissenbach U, Vennekens R, Middendorff R, Flockerzi V, Freichel M (2012) Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J Biol Chem 287(22):17930–17941

    PubMed  CAS  Google Scholar 

  • Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, Lashinger ES, Figueroa DJ, Marquis R, Xu X (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther 326(2):443–452

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Niemeyer BA (2007) Trpv6. Handb Exp Pharmacol 179:221–234

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M, Flockerzi V (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485(2–3):127–134

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276(22):19461–19468

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 322(4):1359–1363

    PubMed  CAS  Google Scholar 

  • Wong GY, Gavva NR (2009) Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res Rev 60(1):267–277

    PubMed  CAS  Google Scholar 

  • Woudenberg-Vrenken TE, Lameris AL, Weissgerber P, Olausson J, Flockerzi V, Bindels RJ, Freichel M, Hoenderop JG (2012) Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption. Am J Physiol Gastrointest Liver Physiol 303(7):G879–G885

    PubMed  CAS  Google Scholar 

  • Wu L, Gao X, Brown RC, Heller S, O’Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293(5):F1699–F1713

    PubMed  CAS  Google Scholar 

  • Wu G, Zhang W, Na T, Jing H, Wu H, Peng JB (2012) Suppression of intestinal calcium entry channel TRPV6 by OCRL, a lipid phosphatase associated with Lowe syndrome and Dent disease. Am J Physiol Cell Physiol 302(10):C1479–C1491

    PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418(6894):181–186

    PubMed  CAS  Google Scholar 

  • Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25(39):8924–8937

    PubMed  CAS  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9(5):628–635

    PubMed  CAS  Google Scholar 

  • Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290(6):L1267–L1276

    PubMed  CAS  Google Scholar 

  • Yin J, Kuebler WM (2008) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56(1):1–18

    Google Scholar 

  • Zanou N, Iwata Y, Schakman O, Lebacq J, Wakabayashi S, Gailly P (2009) Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett 583(22):3600–3604

    PubMed  CAS  Google Scholar 

  • Zhang L, Jones S, Brody K, Costa M, Brookes SJ (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 286(6):G983–G991

    PubMed  CAS  Google Scholar 

  • Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24(24):4211–4223. doi:10.1038/sj.emboj.7600893

    PubMed  CAS  Google Scholar 

  • Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82(12):1755–1764

    PubMed  CAS  Google Scholar 

  • Zimon M, Baets J, Auer-Grumbach M, Berciano J, Garcia A, Lopez-Laso E, Merlini L, Hilton-Jones D, McEntagart M, Crosby AH, Barisic N, Boltshauser E, Shaw CE, Landoure G, Ludlow CL, Gaudet R, Houlden H, Reilly MM, Fischbeck KH, Sumner CJ, Timmerman V, Jordanova A, Jonghe PD (2010) Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 133(Pt 6):1798–1809

    PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Wissenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wissenbach, U. (2014). Pharmacology of TRPV Channels. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_27

Download citation

Publish with us

Policies and ethics