Skip to main content

TRPML Channels and Mucolipidosis Type IV

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

The transient receptor potential (TRP) mucolipin channels TRPML1, TRPML2, and TRPML3 are non-selective cation channels predominantly found in the endolysosomal system. Mutations in the TRPML1 gene (also known as MCOLN1) cause mucolipidosis type IV in humans manifested by psychomotor abnormalities, corneal clouding, retinal degeneration, and progressive neurodegeneration. The recent identification of small compound chemical activators for TRPML channels has opened up the possibility to study TRPML mutant and wild-type isoforms both in vitro and in vivo in more detail. These compounds will permit further investigation on the functional roles of TRPML channels in the endolysosomal system. Ultimately, these drugs or their derivatives could be used to design selective pharmacological tools to gate and rescue specific loss-of-function point mutations in TRPML1 that cause mucolipidosis type IV. Recently discovered TRPML channel interaction partners may serve as alternative pharmacological targets for the treatment of mucolipidosis type IV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomalpathway. Physiology (Bethesda) 26:14–22

    Article  CAS  Google Scholar 

  • Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, Patronas NJ, Frei KP, Gupta S, Kaneski CR, Quarrell OW, Slaugenhaupt SA, Goldin E, Schiffmann R (2002) The neurogenetics of mucolipidosis type IV. Neurology 59:306–313

    Article  PubMed  CAS  Google Scholar 

  • Amaral MD (2011) Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Curr Drug Targets 12:683–693

    Article  PubMed  CAS  Google Scholar 

  • Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26–35

    Article  PubMed  CAS  Google Scholar 

  • Ashlock MA, Olson ER (2011) Therapeutics development for cystic fibrosis: a successful model for a multisystem genetic disease. Annu Rev Med 62:107–125

    Article  PubMed  CAS  Google Scholar 

  • Bach G (2005) Mucolipin 1: endocytosis and cation channel—a review. Pflugers Arch 451:313–317

    Article  PubMed  CAS  Google Scholar 

  • Bach G, Webb MB, Bargal R, Zeigler M, Ekstein J (2005) The frequency of mucolipidosis type IV in the Ashkenazi Jewish population and the identification of 3 novel MCOLN1 mutations. Hum Mutat 26:591

    Article  PubMed  Google Scholar 

  • Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  PubMed  CAS  Google Scholar 

  • Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  PubMed  CAS  Google Scholar 

  • Brailoiu E, Rahman T, Churamani D, Prole DL, Brailoiu GC, Hooper R, Taylor CW, Patel S (2010) An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J Biol Chem 49:38511–38516

    Article  Google Scholar 

  • Brandhorst D, Zwilling D, Rizzoli SO, Lippert U, Lang T, Jahn R (2006) Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci USA 103:2701–2706

    Article  PubMed  CAS  Google Scholar 

  • Byrne BJ, Falk DJ, Clément N, Mah CS (2012) Gene therapy approaches for lysosomalstorage disease: next-generation treatment. Hum Gene Ther 23:808–815

    Article  PubMed  CAS  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  • Chandra M, Zhou H, Li Q, Muallem S, Hofmann SL, Soyombo AA (2011) A role for the Ca2+ channel TRPML1 in gastric acid secretion, based on analysis of knockout mice. Gastroenterology 140:857–867

    Article  PubMed  CAS  Google Scholar 

  • Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335

    Article  PubMed  CAS  Google Scholar 

  • de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60:604–617

    Google Scholar 

  • Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  PubMed  CAS  Google Scholar 

  • Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, Mills E, Cheng X, Delling M, Xu H (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem 284:32040–32052

    Article  PubMed  CAS  Google Scholar 

  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010a) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38. doi: 10.1038/ncomms1037

    Article  PubMed  Google Scholar 

  • Dong XP, Wang X, Xu H (2010b) TRP channels of intracellular membranes. J Neurochem 113:313–328

    Article  PubMed  CAS  Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko JV, Tepikin AV, Petersen OH, Gerasimenko OV (1998) Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr Biol 8:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA 104:19583–19588

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Jörs S, Heller S (2009) Life and death of sensory hair cells expressing constitutively active TRPML3. J Biol Chem 284:13823–13831

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Jörs S, Saldanha SA, Obukhov AG, Pan B, Oshima K, Cuajungco MP, Chase P, Hodder P, Heller S (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Hassan S, Wahl-Schott C, Biel M (2012a) Role of TRPML and two-pore channels in endolysosomalcation homeostasis. J Pharmacol Exp Ther 342:236–244

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S (2012b) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 287:22701–22708

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs -engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  PubMed  CAS  Google Scholar 

  • Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S (2007) Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem 282:36138–36142

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S (2009) The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10:1157–1167

    Google Scholar 

  • Kim HJ, Yamaguchi S, Li Q, So I, Muallem S (2010) Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem 285:16513–16520

    Article  PubMed  CAS  Google Scholar 

  • Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Becirovic E, Koch F, Seide C, Beck SC, Seeliger MW, Biel M, Mühlfriedel R, Michalakis S (2012) Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 21:4486–4496

    Article  PubMed  CAS  Google Scholar 

  • Lelouvier B, Puertollano R (2011) Mucolipin-3 regulates luminal calcium, acidification, and membrane fusion in the endosomal pathway. J Biol Chem 286:9826–9832

    Article  PubMed  CAS  Google Scholar 

  • Lev S, Zeevi DA, Frumkin A, Offen-Glasner V, Bach G, Minke B (2010) Constitutive activity of the human TRPML2 channel induces cell degeneration. J Biol Chem 285:2771–2782

    Article  PubMed  CAS  Google Scholar 

  • Lin-Moshier Y, Walseth TF, Churamani D, Davidson SM, Slama JT, Hooper R, Brailoiu E, Patel S, Marchant JS (2012) Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells. J Biol Chem 287:2296–2307

    Article  PubMed  CAS  Google Scholar 

  • Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35:1088–1091

    Article  PubMed  CAS  Google Scholar 

  • Luzio JP, Gray SR, Bright NA (2010) Endosome-lysosome fusion. Biochem Soc Trans 38:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Martina JA, Lelouvier B, Puertollano R (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430

    Article  PubMed  CAS  Google Scholar 

  • Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic E, Bai L, Huber G, Beck SC, Fahl E, Büning H, Schmidt J, Zong X, Gollisch T, Biel M, Seeliger MW (2012) Gene therapy restores missing cone-mediated vision in the CNGA3-/- mouse model of achromatopsia. Adv Exp Med Biol 723:183–189

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellularfunctions. Trends Biochem Sci 31:52–63

    Article  PubMed  CAS  Google Scholar 

  • Micsenyi MC, Dobrenis K, Stephney G, Pickel J, Vanier MT, Slaugenhaupt SA, Walkley SU (2009) Neuropathology of the Mcoln1(-/-) knockout mouse model of mucolipidosis type IV. J Neuropathol Exp Neurol 68:125–135

    Google Scholar 

  • Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  PubMed  CAS  Google Scholar 

  • Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439:349–374

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 105:353–358

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  PubMed  CAS  Google Scholar 

  • Ogunbayo OA, Zhu Y, Rossi D, Sorrentino V, Ma J, Zhu MX, Evans AM (2011) Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J Biol Chem 286:9136–9140

    Article  PubMed  CAS  Google Scholar 

  • Parenti G, Pignata C, Vajro P, Salerno M (2012) New strategies for the treatment of lysosomal storage diseases. Int J Mol Med 10:3892

    Google Scholar 

  • Pattu V, Qu B, Marshall M, Becherer U, Junker C, Matti U, Schwarz EC, Krause E, Hoth M, Rettig J (2011) Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 12:890–901

    Article  PubMed  CAS  Google Scholar 

  • Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R (2010) TPC2 is a novel NAADP-sensitive Ca2 + release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285:35039–35046

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Klumperman J, Chen YA, Scheller RH (1998) Syntaxin 13mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J Cell Biol 143:957–971

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Yang B, Oorschot V, Klumperman J, Scheller RH (1999) Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol Biol Cell 10:3891–3908

    Article  PubMed  CAS  Google Scholar 

  • Pryor PR, Luzio JP (2009) Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta 1793:615–624

    Article  PubMed  CAS  Google Scholar 

  • Raychowdhury MK, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Chasan B, Goldmann WH, Stahl S, Cooney A, Goldin E, Cantiello HF (2004) Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cationchannel. Hum Mol Genet 13:617–627

    Article  PubMed  CAS  Google Scholar 

  • Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking. Curr Biol 20:703–709

    Article  PubMed  CAS  Google Scholar 

  • Rybalchenko V, Ahuja M, Coblentz J, Churamani D, Patel S, Kiselyov K, Muallem S (2012) Membrane potential regulates nicotinic acid adenine dinucleotide phosphate (NAADP) dependence of the pH- and Ca2+ -sensitive organellar two-pore channel TPC1. J Biol Chem 287:20407–20416

    Article  PubMed  CAS  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  PubMed  CAS  Google Scholar 

  • Saldanha SA, Grimm C, Mercer BA, Choi JY, Allais C, Roush WR, Heller S, Hodder P (2011) Campaign to identify agonists of transient receptor potential channels 3 and 2 (TRPML3 & TRPML2), Probe reports from the NIH molecular libraries program, National Center for Biotechnology Information, Bethesda (MD) 2009 Nov 13 (updated 2011 May 5)

    Google Scholar 

  • Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP (2009) The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch 459:79–91

    Article  PubMed  CAS  Google Scholar 

  • Schieder M, Rötzer K, Brüggemann A, Biel M, Wahl-Schott CA (2010a) Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+currents in isolated lysosomes. J Biol Chem 285:21219–21222

    Article  PubMed  CAS  Google Scholar 

  • Schieder M, Rötzer K, Brüggemann A, Biel M, Wahl-Schott C (2010b) Planar patch clamp approach to characterize ionic currents from intact lysosomes. Sci Signal 3:pl3

    Google Scholar 

  • Schröder BA, Wrocklage C, Hasilik A, Saftig P (2010) The proteome of lysosomes. Proteomics 10:4053–4076

    Article  PubMed  Google Scholar 

  • Scott CC, Gruenberg J (2011) Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. BioEssays 33:103–110

    Article  PubMed  CAS  Google Scholar 

  • Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    Article  PubMed  Google Scholar 

  • Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4:a011353

    Article  PubMed  Google Scholar 

  • Südhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3:a005637

    Article  PubMed  Google Scholar 

  • Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Tugba Durlu-Kandilci N, Ruas M, Chuang KT, Brading A, Parrington J, Galione A (2010) TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J Biol Chem 285:24925–24932

    Article  PubMed  CAS  Google Scholar 

  • van Gelder CM, Vollebregt AA, Plug I, van der Ploeg AT, Reuser AJ (2012) Treatment options for lysosomalstorage disorders: developing insights. Expert Opin Pharmacother 13:2281–2299

    Article  PubMed  Google Scholar 

  • vanGoor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848

    Article  CAS  Google Scholar 

  • Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–353

    Article  PubMed  CAS  Google Scholar 

  • Vergarajauregui S, Martina JA, Puertollano R (2009) Identification of the penta-EF-hand protein ALG-2 as a Ca2 + -dependent interactor of mucolipin-1. J Biol Chem 284:36357–36366

    Article  PubMed  CAS  Google Scholar 

  • Vergarajauregui S, Martina JA, Puertollano R (2011) LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J Cell Sci 124:459–468

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Hofmann T, Montell C (2006) Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281:17517–17527

    Article  PubMed  CAS  Google Scholar 

  • Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N, Walkley SU, Pickel J, Slaugenhaupt SA (2007) Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 81:1070–1083

    Article  PubMed  CAS  Google Scholar 

  • Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, Slaugenhaupt SA (2009) Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol 219:344–353

    Article  PubMed  CAS  Google Scholar 

  • Walseth TF, Lin-Moshier Y, Jain P, Ruas M, Parrington J, Galione A, Marchant JS, Slama JT (2012) Photoaffinity labeling of high affinity nicotinic acid adenine dinucleotide phosphate (NAADP)-binding proteins in sea urchin egg. J Biol Chem 287:2308–2315

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–383

    Article  PubMed  CAS  Google Scholar 

  • Weiss N (2012) Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases. Commun Integr Biol 5:111–113

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutationin a mucolipin transient receptor potential channel leads to melanocyteloss in varitint-waddler mice. Proc Natl Acad Sci USA 104:18321–18326

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Muallem S (2010) Opening the TRPML gates. Chem Biol 17:209–210

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S (2011) Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem 286:22934–22942

    Article  PubMed  CAS  Google Scholar 

  • Zeevi DA, Frumkin A, Offen-Glasner V, Kogot-Levin A, Bach G (2009) A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 219:153–162

    Article  PubMed  CAS  Google Scholar 

  • Zeevi DA, Lev S, Frumkin A, Minke B, Bach G (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123:3112–3124

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li X, Xu H (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci USA 109:11384–11389

    Article  PubMed  CAS  Google Scholar 

  • Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rötzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores. Pflugers Arch 458:891–899

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grimm, C., Cuajungco, M.P. (2014). TRPML Channels and Mucolipidosis Type IV . In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_19

Download citation

Publish with us

Policies and ethics