Skip to main content

Pharmacology of Voltage-Gated Calcium Channels in Clinic

  • Chapter
  • First Online:
Book cover Pathologies of Calcium Channels

Abstract

The diversity of voltage-gated calcium channels (VGCC) allows precise time- and voltage-dependent regulation of calcium ions entry into cells. Individual calcium channel subtypes participate in the initiation of neuronal action potential and repetitive action potential firing; in cardiac pacemaking and signal conduction; in shaping an action potential plateau; and in action potential repolarization. Calcium entry through VGCC is necessary for cardiac and smooth muscle cell contraction. Since disrupted regulation of calcium homeostasis accompanies various pathologies, the complex pattern of regulation of cell physiology by VGCC makes them an attractive target for pharmaceutical agents. The most common pathologies treated with VGCC blockers are cardiovascular diseases, especially hypertension, angina, and tachycardia. In addition, calcium channels have been identified as targets of some antiepileptic and anesthetic drugs. More recently, specific VGCC blockers were introduced in the treatment of chronic pain, and these have also proved beneficial as support therapy in neurodegenerative diseases and cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer CS, Rahman W, Tran-van-Minh A, Lujan R, Dickenson AH, Dolphin AC (2010) The anti-allodynic α2δ ligand pregabalin inhibits the trafficking of the calcium channel α2δ-1 subunit to presynaptic terminals in vivo. Biochem Soc Trans 38(2):525–528

    Article  PubMed  CAS  Google Scholar 

  • Ben-Menachem E (2004) Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 45(Suppl 6):13–18

    Article  PubMed  CAS  Google Scholar 

  • Bergson P, Lipkind G, Lee SP, Duban ME, Hanck DA (2011) Verapamil block of T-type calcium channels. Mol Pharmacol 79(3):411–419

    Article  PubMed  CAS  Google Scholar 

  • Bermejo PE, Dorado R (2009) Zonisamide for migraine prophylaxis in patients refractory to topiramate. Clin Neuropharmacol 32(2):103–106

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Tsien RW (1995) Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol Pharmacol 48(3):540–549

    PubMed  CAS  Google Scholar 

  • Bui PH, Quesada A, Handforth A, Hankinson O (2008) The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil. Drug Metab Dispos 36(7):1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Caballero R, Gomez R, Nunez L, Moreno I, Tamargo J, Delpon E (2004) Diltiazem inhibits hKv1.5 and Kv4.3 currents at therapeutic concentrations. Cardiovasc Res 64(3):457–466

    Article  PubMed  CAS  Google Scholar 

  • Catacuzzeno L, Trequattrini C, Petris A, Franciolini F (1999) Mechanism of verapamil block of a neuronal delayed rectifier K channel: active form of the blocker and location of its binding domain. Br J Pharmacol 126(8):1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Charlon V, Kobrin I (1998) The efficacy and safety of mibefradil in subgroups of patients with chronic stable angina pectoris. Int J Clin Pract 52(4):257–264

    PubMed  CAS  Google Scholar 

  • Comunanza V, Marcantoni A, Vandael DH, Mahapatra S, Gavello D, Carabelli V, Carbone E (2010) Cav1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis? Channels (Austin) 4 (6):440−446

    Google Scholar 

  • Davies GJ, Kobrin I, Caspi A, Reisin LH, de Albuquerque DC, Armagnijan D, Coelho OR, Schneeweiss A (1997) Long-term antianginal and antiischemic effects of mibefradil, the novel T-type calcium channel blocker: a multicenter, double-blind, placebo-controlled, randomized comparison with sustained-release diltiazem. Am Heart J 134(2 Pt 1):220–228

    Article  PubMed  CAS  Google Scholar 

  • Elliott WJ, Ram CV (2011) Calcium channel blockers. J Clin Hypertens (Greenwich) 13(9):687–689

    Article  CAS  Google Scholar 

  • Essack M, Bajic VB, Archer JA (2012) Conotoxins that confer therapeutic possibilities. Mar Drugs 10(6):1244–1265

    Article  PubMed  CAS  Google Scholar 

  • Fischhof PK (1993) Divergent neuroprotective effects of nimodipine in PDD and MID provide indirect evidence of disturbances in Ca2+ homeostasis in dementia. Methods Find Exp Clin Pharmacol 15(8):549–555

    PubMed  CAS  Google Scholar 

  • Fleckenstein A (1983) History of calcium antagonists. Circ Res 52(2 Pt 2):I3–I16

    PubMed  CAS  Google Scholar 

  • Frishman WH, Bittar N, Glasser S, Habib G, Smith W, Pordy R (1998) Additional antianginal and anti-ischemic efficacy of mibefradil in patients concomitantly treated with long-acting nitrates for chronic stable angina pectoris. Clin Cardiol 21(7):483–490

    Article  PubMed  CAS  Google Scholar 

  • Gallego D, Auli M, Aleu J, Martinez E, Rofes L, Marti-Rague J, Jimenez M, Clave P (2010) Effect of otilonium bromide on contractile patterns in the human sigmoid colon. Neurogastroenterol Motil 22(6):e180–e191

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Sun H, Chiu SW, Lau CP, Li GR (2005) Effects of diltiazem and nifedipine on transient outward and ultra-rapid delayed rectifier potassium currents in human atrial myocytes. Br J Pharmacol 144(4):595–604

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Salomone S, Dessy C, Verhelst B, Dion R, Schoevaerts JC (1992) Selectivity scale of calcium antagonists in the human cardiovascular system based on in vitro studies. J Cardiovasc Pharmacol 20(Suppl 5):S34–S41

    PubMed  CAS  Google Scholar 

  • Hanyu H, Hirao K, Shimizu S, Sato T, Kiuchi A, Iwamoto T (2007) Nilvadipine prevents cognitive decline of patients with mild cognitive impairment. Int J Geriatr Psychiatry 22(12):1264–1266

    Article  PubMed  Google Scholar 

  • Kato M, Dote K, Sasaki S, Takemoto H, Habara S, Hasegawa D (2004) Intracoronary verapamil rapidly terminates reperfusion tachyarrhythmias in acute myocardial infarction. Chest 126(3):702–708

    Article  PubMed  CAS  Google Scholar 

  • Kawano Y, Makino Y, Okuda N, Takishita S, Omae T (2000) Effects of diltiazem retard on ambulatory blood pressure and heart rate variability in patients with essential hypertension. Blood Press Monit 5(3):181–185

    Article  PubMed  CAS  Google Scholar 

  • Kobrin I, Bieska G, Charlon V, Lindberg E, Pordy R (1998) Anti-anginal and anti-ischemic effects of mibefradil, a new T-type calcium channel antagonist. Cardiology 89(Suppl 1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Lacinova L (2004) Pharmacology of recombinant low-voltage activated calcium channels. Curr Drug Targets CNS Neurol Disord 3(2):105–111

    Article  PubMed  CAS  Google Scholar 

  • Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78

    PubMed  CAS  Google Scholar 

  • Lacinova L (2011) T-type calcium channel blockers—new and notable. Gen Physiol Biophys 30(4):403–409

    Article  PubMed  CAS  Google Scholar 

  • Lacourciere Y, Poirier L, Lefebvre J, Archambault F, Dalle Ave S, Ward C, Lindberg E (1997) The antihypertensive efficacy of the novel calcium antagonist mibefradil in comparison with nifedipine GITS in moderate to severe hypertensives with ambulatory hypertension. Am J Hypertens 10(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Park SJ, Lee MJ, Rhim H, Seo SH, Kim KS (2006) Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers. Bioorg Med Chem Lett 16(19):5014–5017

    Article  PubMed  CAS  Google Scholar 

  • Leppik IE (2004) Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure 13 Suppl 1:S5−9; (discussion S10)

    Google Scholar 

  • Lindqvist M, Kahan T, Melcher A, Ekholm M, Hjemdahl P (2007) Long-term calcium antagonist treatment of human hypertension with mibefradil or amlodipine increases sympathetic nerve activity. J Hypertens 25(1):169–175

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100(9):5543–5548

    Article  PubMed  CAS  Google Scholar 

  • Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Pacemaker activity and ionic currents in mouse atrioventricular node cells. Channels (Austin) 5(3):241–250

    Article  CAS  Google Scholar 

  • Masuda Y, Karasawa T, Shiraishi Y, Hori M, Yoshida K, Shimizu M (1980) 3-Sulfamoylmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug. Pharmacological profile. Arzneimittelforschung 30(3):477–483

    PubMed  CAS  Google Scholar 

  • Michna M, Knirsch M, Hoda JC, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J (2003) Cav1.3 (α1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 553 (Pt 3):747−758

    Google Scholar 

  • Miwa Y, Masai H, Shimizu M (2009) Differential effects of calcium-channel blockers on vascular endothelial function in patients with coronary spastic angina. Circ J 73(4):713–717

    Article  PubMed  CAS  Google Scholar 

  • Moosmang S, Haider N, Bruderl B, Welling A, Hofmann F (2006) Antihypertensive effects of the putative T-type calcium channel antagonist mibefradil are mediated by the L-type calcium channel Cav1.2. Circ Res 98(1):105–110

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Dafni U, Simpson D, Tucker T, Singer E, McArthur JC, Yiannoutsos C, Zaborski L, Lipton SA (1998) A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology 51(1):221–228

    Article  PubMed  CAS  Google Scholar 

  • Ohishi M, Takagi T, Ito N, Terai M, Tatara Y, Hayashi N, Shiota A, Katsuya T, Rakugi H, Ogihara T (2007) Renal-protective effect of T-and L-type calcium channel blockers in hypertensive patients: an amlodipine-to-benidipine changeover (ABC) study. Hypertens Res 30(9):797–806

    Article  PubMed  CAS  Google Scholar 

  • Oshima T, Ozono R, Yano Y, Higashi Y, Teragawa H, Miho N, Ishida T, Ishida M, Yoshizumi M, Kambe M (2005) Beneficial effect of T-type calcium channel blockers on endothelial function in patients with essential hypertension. Hypertens Res 28(11):889–894

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    PubMed  CAS  Google Scholar 

  • Raffaeli W, Righetti D, Sarti D, Balestri M, Ferioli I, Monterubbianesi MC, Caminiti A (2011) Ziconotide: a rapid detoxification protocol for the conversion from intrathecal morphine–the raffaeli detoxification model. J Opioid Manag 7(1):21–26

    Article  PubMed  Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol 192(2):479–492

    PubMed  CAS  Google Scholar 

  • Reuter H, Beeler GW Jr (1969) Calcium current and activation of contraction in ventricular myocardial fibers. Science 163(3865):399–401

    Article  PubMed  CAS  Google Scholar 

  • Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S (2010) L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 67(5):600–606

    PubMed  CAS  Google Scholar 

  • Santi CM, Cayabyab FS, Sutton KG, McRory JE, Mezeyova J, Hamming KS, Parker D, Stea A, Snutch TP (2002) Differential inhibition of T-type calcium channels by neuroleptics. J Neurosci 22(2):396–403

    PubMed  CAS  Google Scholar 

  • Seino H, Miyaguchi S, Yamazaki T, Ota S, Yabe R, Suzuki S (2007) Effect of benidipine hydrochloride, a long-acting T-type calcium channel blocker, on blood pressure and renal function in hypertensive patients with diabetes mellitus. Analysis after switching from cilnidipine to benidipine. Arzneimittelforschung 57(8):526–531

    PubMed  CAS  Google Scholar 

  • Smith HS, Deer TR (2009) Safety and efficacy of intrathecal ziconotide in the management of severe chronic pain. Ther Clin Risk Manag 5(3):521–534

    Article  PubMed  CAS  Google Scholar 

  • SoRelle R (1998) Withdrawal of Posicor from market. Circulation 98(9):831–832

    Article  PubMed  CAS  Google Scholar 

  • Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, Fisher R, Bryce DA, Mangieri EA, Luther RR, Mayo M, McGuire D, Ellis D (2004) Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. Jama 291(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Strege PR, Evangelista S, Lyford GL, Sarr MG, Farrugia G (2004) Otilonium bromide inhibits calcium entry through L-type calcium channels in human intestinal smooth muscle. Neurogastroenterol Motil 16(2):167–173

    Article  PubMed  CAS  Google Scholar 

  • Strege PR, Sha L, Beyder A, Bernard CE, Perez-Reyes E, Evangelista S, Gibbons SJ, Szurszewski JH, Farrugia G (2010) T-type Ca2+ channel modulation by otilonium bromide. Am J Physiol Gastrointest Liver Physiol 298(5):G706–G713

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328(6128):313–318

    Article  PubMed  CAS  Google Scholar 

  • Tarabova B, Lacinova L, Engel J (2007) Effects of phenylalkylamines and benzothiazepines on Ca(v)1.3-mediated Ca2+ currents in neonatal mouse inner hair cells. Eur J Pharmacol 573(1–3):39–48

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (α2-δ) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73(2):137–150

    Article  PubMed  CAS  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V (2011) T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 163(3):484–495

    Article  PubMed  CAS  Google Scholar 

  • Tran-Van-Minh A, Dolphin AC (2010) The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2. J Neurosci 30(38):12856–12867

    Article  PubMed  CAS  Google Scholar 

  • Welling A, Ludwig A, Zimmer S, Klugbauer N, Flockerzi V, Hofmann F (1997) Alternatively spliced IS6 segments of the α 1C gene determine the tissue-specific Dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 81(4):526–532

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Haynes J, Jr, Taylor JT, Obiako BO, Stubbs JR, Li M, Stevens T (2003) Cav3.1 (α1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation. Circ Res 93 (4):346−353

    Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84(9):989–998

    Article  PubMed  CAS  Google Scholar 

  • Zuccotti A, Clementi S, Reinbothe T, Torrente A, Vandael DH, Pirone A (2011) Structural and functional differences between L-type calcium channels: crucial issues for future selective targeting. Trends Pharmacol Sci 32(6):366–375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubica Lacinová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lacinová, L., Lichvárová, L. (2014). Pharmacology of Voltage-Gated Calcium Channels in Clinic. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_16

Download citation

Publish with us

Policies and ethics