Skip to main content

Cav1.3 Channels and Sino-Atrial Node Dysfunction

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

Cardiac pacemaker activity controls the heartbeat in everyday life. The heart impulse originates in the sino-atrial node, which is formed by a small population of myocytes generating automatic action potentials. Automaticity is due to the presence of the slow diastolic depolarization, which leads the membrane voltage at the end of an action potential toward the threshold of the following action potential. The functional role of voltage-dependent Ca2+ channels (VDCCs) to the generation of the slow diastolic depolarization and its regulation by the autonomic nervous system has been matter of debate for almost 30 years. During the last 10 years, however, increasing evidence obtained from genetically modified mice, genomic analysis, and human genetics clearly demonstrated that L-type Cav1.3 channels play a major role in the genesis of cardiac automaticity. First, studies on mice lacking Cav1.3 channels have shown that Cav1.3 loss-of-function leads to bradycardia and atrioventricular conduction block in vivo. Second, patch clamp recordings of pacemaker cells demonstrated that Cav1.3 channels bring critical inward current in a voltage range spanning the diastolic depolarization. Third, genomic analysis demonstrated that Cav1.3 channels are widely expressed in pacemaker tissue of mice, rabbits, and humans. Fourth, two congenital diseases of pacemaking have been attributed to Cav1.3 loss-of-function. In this chapter, we will discuss recent advances in the understanding of the physiological relevance of Cav1.3 channels in cardiac pacemaker activity and review the current knowledge in the involvement of these channels in the determination of heart automaticity and atrioventricular conduction in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nurnberg P, Striessnig J, Bolz HJ (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14 (1):77–;84. doi:nn.2694 [pii]10.1038/nn.2694

    Google Scholar 

  • Bertram H, Paul T, Beyer F, Kallfelz HC (1996) Familial idiopathic atrial fibrillation with bradyarrhythmia. Eur J Pediatr 155(1):7–10

    Article  PubMed  CAS  Google Scholar 

  • Bohm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376(9744):886–894. doi:S0140-6736(10)61259-7 [pii]10.1016/S0140-6736(10)61259-7

    Google Scholar 

  • Boutjdir M (2000) Molecular and ionic basis of congenital complete heart block. Trends Cardiovasc Med 10(3):114–122

    Article  PubMed  CAS  Google Scholar 

  • Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280(5719):235–236

    Article  PubMed  CAS  Google Scholar 

  • Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, Difrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H (2009) Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 119(12):1562–1575

    Article  PubMed  Google Scholar 

  • Christel CJ, Cardona N, Mesirca P, Herrmann S, Hofmann F, Striessnig J, Ludwig A, Mangoni ME, Lee A (2012) Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. J Physiol 590(Pt 24):6327–6342. doi:jphysiol.2012.239954 [pii]10.1113/jphysiol.2012.239954

    Google Scholar 

  • Clark RB, Mangoni ME, Lueger A, Couette B, Nargeot J, Giles WR (2004) A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol 286(5):H1757–H1766

    Article  PubMed  CAS  Google Scholar 

  • Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, Koval O, Li J, Gudmundsson H, Gumina RJ, Karck M, Schott JJ, Probst V, Le Marec H, Anderson ME, Dobrev D, Wehrens XH, Mohler PJ (2011) Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation 12411):1212–1222. doi:CIRCULATIONAHA.111.023986 [pii]10.1161/CIRCULATIONAHA.111.023986

  • Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26(10):967–974. doi:ehi190 [pii]10.1093/eurheartj/ehi190

    Google Scholar 

  • DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106(3):434–446. doi:106/3/434 [pii]10.1161/CIRCRESAHA.109.208041

    Google Scholar 

  • Doerr T, Denger R, Trautwein W (1989) Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflugers Arch 413(6):599–603

    Article  PubMed  CAS  Google Scholar 

  • Giles WR, Shibata EF (1985) Voltage clamp of bull-frog cardiac pace-maker cells: a quantitative analysis of potassium currents. J Physiol 368:265–292

    PubMed  CAS  Google Scholar 

  • Gillman MW, Kannel WB, Belanger A, D’Agostino RB (1993) Influence of heart rate on mortality among persons with hypertension: the Framingham Study. Am Heart J 125(4):1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv-European J Physiol 391(2):85–100

    Article  CAS  Google Scholar 

  • Hu K, Qu Y, Yue Y, Boutjdir M (2004) Functional basis of sinus bradycardia in congenital heart block. Circ Res 94(4):e32–e38

    Article  PubMed  CAS  Google Scholar 

  • Irisawa H, Brown HF, Giles W (1993) Cardiac pacemaking in the sinoatrial node. Physiol Rev 73(1):197–227

    PubMed  CAS  Google Scholar 

  • Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272(6 Pt 2):H2793–H2806

    PubMed  CAS  Google Scholar 

  • Lakatta EG, DiFrancesco D (2009) What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 47(2):157–170

    Article  PubMed  CAS  Google Scholar 

  • Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106(4):659–673. doi:106/4/659 [pii]10.1161/CIRCRESAHA.109.206078

    Google Scholar 

  • Lande G, Kyndt F, Baro I, Chabannes D, Boisseau P, Pony JC, Escande D, Le Marec H (2001) Dynamic analysis of the QT interval in long QT1 syndrome patients with a normal phenotype. Eur Heart J 22(5):410–422

    Article  PubMed  CAS  Google Scholar 

  • Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O, Marionneau C, Chen B, Wu Y, Demolombe S, Song LS, Le Marec H, Probst V, Schott JJ, Anderson ME, Mohler PJ (2008) Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci USA 105(40):15617–15622. doi:0805500105 [pii]10.1073/pnas.0805500105

    Google Scholar 

  • Lehmann H, Klein UE (1978) Familial sinus node dysfunction with autosomal dominant inheritance. Br Heart J 40(11):1314–1316

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh AF, Chamberlain DA (1979) Sinus node disease affecting both parents and both children. Eur J Cardiol 10(2):117–122

    PubMed  CAS  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 100(9):5543–5548

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Couette B, Marger L, Bourinet E, Striessnig J, Nargeot J (2006a) Voltage-dependent calcium channels and cardiac pacemaker activity: From ionic currents to genes. Prog Biophys Mol Biol 90(1–3):38–63

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Fontanaud P, Noble PJ, Noble D, Benkemoun H, Nargeot J, Richard S (2000) Facilitation of the L-type calcium current in rabbit sino-atrial cells: effect on cardiac automaticity. Cardiovasc Res 48(3):375–392

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006b) Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/alpha1G T-type calcium channels. Circ Res 98(11):1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Mangrum JM, DiMarco JP (2000) The evaluation and management of bradycardia. N Engl J Med 342(10):703–709

    Article  PubMed  CAS  Google Scholar 

  • Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin) 5(3):251–261. doi:15266 [pii]

    Google Scholar 

  • Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562(Pt 1):223–234

    Article  PubMed  CAS  Google Scholar 

  • Matthes J, Yildirim L, Wietzorrek G, Reimer D, Striessnig J, Herzig S (2004) Disturbed atrio-ventricular conduction and normal contractile function in isolated hearts from Cav1.3-knockout mice. Naunyn Schmiedebergs Arch Pharmacol 369(6):554–562

    Article  PubMed  CAS  Google Scholar 

  • Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D (2006) Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 354(2):151–157

    Article  PubMed  CAS  Google Scholar 

  • Neco P, Torrente AG, Mesirca P, Zorio E, Liu N, Priori SG, Napolitano C, Richard S, Benitah JP, Mangoni ME, Gomez AM (2012) Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation 126(4):392–401. doi:CIRCULATIONAHA.111.075382 [pii]10.1161/CIRCULATIONAHA.111.075382

    Google Scholar 

  • Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol 353:1–50

    PubMed  CAS  Google Scholar 

  • Noma A, Irisawa H, Kokobun S, Kotake H, Nishimura M, Watanabe Y (1980) Slow current systems in the A-V node of the rabbit heart. Nature 285(5762):228–229

    Article  PubMed  CAS  Google Scholar 

  • Noma A, Morad M, Irisawa H (1983) Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? Pflugers Arch 397(3):190–194

    Article  PubMed  CAS  Google Scholar 

  • Petit-Jacques J, Bois P, Bescond J, Lenfant J (1993) Mechanism of muscarinic control of the high-threshold calcium current in rabbit sino-atrial node myocytes. Pflugers Arch 423(1–2):21–27

    Article  PubMed  CAS  Google Scholar 

  • Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Muller M, Sotoodehnia N, Sinner MF, Verwoert GC, Li M, Kao WH, Kottgen A, Coresh J, Bis JC, Psaty BM, Rice K, Rotter JI, Rivadeneira F, Hofman A, Kors JA, Stricker BH, Uitterlinden AG, van Duijn CM, Beckmann BM, Sauter W, Gieger C, Lubitz SA, Newton-Cheh C, Wang TJ, Magnani JW, Schnabel RB, Chung MK, Barnard J, Smith JD, Van Wagoner DR, Vasan RS, Aspelund T, Eiriksdottir G, Harris TB, Launer LJ, Najjar SS, Lakatta E, Schlessinger D, Uda M, Abecasis GR, Muller-Myhsok B, Ehret GB, Boerwinkle E, Chakravarti A, Soliman EZ, Lunetta KL, Perz S, Wichmann HE, Meitinger T, Levy D, Gudnason V, Ellinor PT, Sanna S, Kaab S, Witteman JC, Alonso A, Benjamin EJ, Heckbert SR (2010) Genome-wide association study of PR interval. Nat Genet 42(2):153–159. doi:ng.517 [pii]10.1038/ng.517

    Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AA, Lekanne Deprez RH, Moorman AF (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102(11):1433–1442. doi:CIRCRESAHA.107.168294 [pii]10.1161/CIRCRESAHA.107.168294

    Google Scholar 

  • Qu Y, Baroudi G, Yue Y, Boutjdir M (2005) Novel molecular mechanism involving alpha1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia. Circulation 111(23):3034–3041

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol 192(2):479–492

    PubMed  CAS  Google Scholar 

  • Sarachek NS, Leonard JL (1972) Familial heart block and sinus bradycardia. Classification and natural history. Am J Cardiol 29(4):451–458

    Article  PubMed  CAS  Google Scholar 

  • Shibata EF, Giles WR (1985) Ionic currents that generate the spontaneous diastolic depolarization in individual cardiac pacemaker cells. Proc Natl Acad Sci U S A 82(22):7796–7800

    Article  PubMed  CAS  Google Scholar 

  • Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S, Cavalli M, Walter D, Koschak A, Waldschutz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig JJ (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2 + channels. J Clin Invest 113(10):1430–1439

    PubMed  CAS  Google Scholar 

  • Tellez JO, Dobrzynski H, Greener ID, Graham GM, Laing E, Honjo H, Hubbard SJ, Boyett MR, Billeter R (2006) Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res 99(12):1384–1393

    Article  PubMed  CAS  Google Scholar 

  • Verheijck EE, van Ginneken AC, Wilders R, Bouman LN (1999) Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 276(3 Pt 2):H1064–H1077

    PubMed  CAS  Google Scholar 

  • Verheijck EE, Wilders R, Bouman LN (2002) Atrio-sinus interaction demonstrated by blockade of the rapid delayed rectifier current. Circulation 105(7):880–885

    Article  PubMed  Google Scholar 

  • Vinogradova TM, Bogdanov KY, Lakatta EG (2002) Beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res 90(1):73–79

    Article  PubMed  CAS  Google Scholar 

  • Waltuck J, Buyon JP (1994) Autoantibody-associated congenital heart block: outcome in mothers and children. Ann Intern Med 120(7):544–551

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhang Z, Timofeyev V, Sharma D, Xu D, Tuteja D, Dong PH, Ahmmed GU, Ji Y, Shull GE, Periasamy M, Chiamvimonvat N (2005) The effects of intracellular Ca2+ on cardiac K+ channel expression and activity: novel insights from genetically altered mice. J Physiol 562(Pt 3):745–758

    Article  PubMed  CAS  Google Scholar 

  • Zaza A, Robinson RB, DiFrancesco D (1996) Basal responses of the L-type Ca2+ and hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node. J Physiol 491(Pt 2):347–355

    PubMed  CAS  Google Scholar 

  • Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A, Long MK, Bond CT, Adelman JP, Chiamvimonvat N (2008) Functional roles of a Ca2+ -activated K+ channel in atrioventricular nodes. Circ Res 102(4):465–471. doi:CIRCRESAHA.107.161778 [pii]10.1161/CIRCRESAHA.107.161778

    Google Scholar 

  • Zhang Q, Timofeyev V, Qiu H, Lu L, Li N, Singapuri A, Torado CL, Shin HS, Chiamvimonvat N (2011) Expression and roles of Cav1.3 (alpha1D) L-type Ca(2)+ channel in atrioventricular node automaticity. J Mol Cell Cardiol 50(1):194–202. doi:S0022-2828(10)00380-9 [pii]10.1016/j.yjmcc.2010.10.002

    Google Scholar 

  • Zhang Z, He Y, Tuteja D, Xu D, Timofeyev V, Zhang Q, Glatter KA, Xu Y, Shin HS, Low R, Chiamvimonvat N (2005) Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 112(13):1936–1944

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90(9):981–987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo E. Mangoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mesirca, P., Mangoni, M.E. (2014). Cav1.3 Channels and Sino-Atrial Node Dysfunction. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_13

Download citation

Publish with us

Policies and ethics