Skip to main content

Energy Harvesting from Temperature: Use of Pyroelectric and Electrocaloric Properties

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.,volume 34))

Abstract

The previous chapters were devoted to the introduction to the electrocaloric effect and an extensive presentation of different materials. The main application target is the solid-state cooling, and its practical implementation was discussed in chap. 8. In this case, the electrical energy is converted into thermal energy. But electrocaloric materials are also pyroelectric, and the thermal energy can be transformed into electrical energy using the same materials. It can be utilized for power supply of autonomous devices (also called energy harvesting), or even for energy production. In this chapter, the principles of electrical energy production from thermal sources using pyroelectric materials are presented. Linear pyroelectric properties may be utilized as a straightforward transfer from piezoelectric energy harvesting. In particular, energy harvesting figure of merit, as well as electrothermal coupling factor are presented. Then, materials properties and their optimization are discussed. Beyond linear materials, nonlinear ones exhibit the highest known electrocaloric properties. Performing thermodynamic cycles (such as Olsen / Ericsson cycles, or Stirling cycles), it is possible to obtain much larger output energies when working in the vicinity of phase transitions. Finally, the correlation between electrocaloric effect and energy harvesting ability is established. It is shown that the best materials for electrocaloric cooling are also the best candidates for energy harvesting as well. Some predictions are then shown with ultra high output energy densities and efficiencies related to Carnot cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birks, E., Shebanov, L., Sternberg, A.: Electrocaloric effect in PLZT ceramics. Ferroelectrics 69(1), 125–129 (1986). doi:10.1080/00150198608008134

    Article  CAS  Google Scholar 

  2. Chang, H.H.S., Huang, Z.: Substantial pyroelectric effect enhancement in laminated composites. Appl. Phys. Lett. 92(15), 152903 (2008). doi:10.1063/1.2907701

    Article  Google Scholar 

  3. Chang, H.H.S., Huang, Z.: Laminate composites with enhanced pyroelectric effects for energy harvesting. Smart Mater. Struct. 19(6), 065018 (2010). doi:10.1088/0964-1726/19/6/065018

    Article  Google Scholar 

  4. Cuadras, A., Gasulla, M., Ferrari, V.: Thermal energy harvesting through pyroelectricity. Sens. Actuators, A 158(1), 132–139 (2010). doi:10.1016/j.sna.2009.12.018

    Article  CAS  Google Scholar 

  5. Davis, M., Damjanovic, D., Setter, N.: Pyroelectric properties of (1−x)Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3]-xPbTiO[sub 3] and (1−x)Pb(Zn[sub 1/3]Nb[sub 2/3])O[sub 3]-xPbTiO[sub 3] single crystals measured using a dynamic method. J. Appl. Phys. 96(5), 2811 (2004). doi:10.1063/1.1775308

    Article  CAS  Google Scholar 

  6. Epstein, R.I., Malloy, K.J.: Electrocaloric devices based on thin-film heat switches. J. Appl. Phys. 106(6), 064509 (2009). doi:10.1063/1.3190559

    Article  Google Scholar 

  7. Fang, J., Frederich, H., Pilon, L.: Harvesting nanoscale thermal radiation using pyroelectric materials. J. Heat Transf. 132(9), 092701 (2010). doi:10.1115/1.4001634

    Article  Google Scholar 

  8. Fatuzzo, E.: Theoretical efficiency of pyroelectric power converters. J. Appl. Phys. 37(2), 510 (1966). doi:10.1063/1.1708205

    Article  Google Scholar 

  9. Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(4), 584–595 (2005). doi:10.1109/TUFFC.2005.1428041

    Article  Google Scholar 

  10. Guyomar, D., Sebald, G., Pruvost, S., Lallart, M., Khodayari, A., Richard, C.: Energy harvesting from ambient vibrations and heat. J. Intell. Mater. Syst. Struct. 20(5), 609–624 (2008). doi:10.1177/1045389X08096888

    Article  Google Scholar 

  11. Guyomar, D., Pruvost, S., Sebald, G.: Energy harvesting based on FE-FE transition in ferroelectric single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(2), 279–285 (2008). doi:10.1109/TUFFC.2008.646

    Article  Google Scholar 

  12. Guyomar, D., Sebald, G., Lefeuvre, E., Khodayari, A.: Toward heat energy harvesting using pyroelectric material. J. Intell. Mater. Syst. Struct. 20(3), 265–271 (2008). doi:10.1177/1045389X08093564

    Article  Google Scholar 

  13. He, J., Chen, J., Zhou, Y., Wang, J.T.: Regenerative characteristics of electrocaloric Stirling or Ericsson refrigeration cycles. Energy Convers. Manage. 43(17), 2319–2327 (2002). doi:10.1016/S0196-8904(01)00183-2

    Article  Google Scholar 

  14. Ikura, M.: Conversion of low-grade heat to electricity using pyroelectric copolymer. Ferroelectrics 267(1), 403–408 (2002). doi:10.1080/713715909

    CAS  Google Scholar 

  15. Kandilian, R., Navid, A., Pilon, L.: The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Mater. Struct. 20(5), 055020 (2011). doi:10.1088/0964-1726/20/5/055020

    Article  Google Scholar 

  16. Kar-Narayan, S., Mathur, N.D.: Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys. D Appl. Phys. 43(3), 032002 (2010). doi:10.1088/0022-3727/43/3/032002

    Article  Google Scholar 

  17. Khodayari, A., Pruvost, S., Sebald, G., Guyomar, D., Mohammadi, S.: Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 693–699 (2009). doi:10.1109/TUFFC.2009.1092

    Article  Google Scholar 

  18. Kouchachvili, L., Ikura, M.: Pyroelectric conversion–effects of P(VDF-TrFE) preconditioning on power conversion. J. Electrostat. 65(3), 182–188 (2007). doi:10.1016/j.elstat.2006.07.014

    Article  CAS  Google Scholar 

  19. Kouchachvili, L., Ikura, M.: Improving the efficiency of pyroelectric conversion. Int. J. Energy Res. 32(4), 328–335 (2008). doi:10.1002/er.1361

    Article  CAS  Google Scholar 

  20. Lallart, M., Guyomar, D.: An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Mater. Struct. 17(3), 035030 (2008). doi:10.1088/0964-1726/17/3/035030

    Article  Google Scholar 

  21. Lam, K.S., Wong, Y.W., Tai, L.S., Poon, Y.M., Shin, F.G.: Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites. J. Appl. Phys. 96(7), 3896 (2004). doi:10.1063/1.1787586

    Article  CAS  Google Scholar 

  22. Lang, S.B., Muensit, S.: Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys. A 85(2), 125–134 (2006). doi:10.1007/s00339-006-3688-8

    Article  CAS  Google Scholar 

  23. Lefeuvre, E., Badel, A., Richard, C., Petit, L., Guyomar, D.: A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens. Actuators, A: Physical 126(2), 405–416 (2006). doi:10.1016/j.sna.2005.10.043

    Article  CAS  Google Scholar 

  24. Li, X., Qian, X., Lu, S.G., Cheng, J., Fang, Z., Zhang, Q.M.: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99(5), 052907 (2011). doi:10.1063/1.3624533

    Article  Google Scholar 

  25. Lu, S.G., Rožič, B., Zhang, Q.M., Kutnjak, Z., Pirc, R., Lin, M., Li, X., et al.: Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97(20), 202901 (2010). doi:10.1063/1.3514255

    Article  Google Scholar 

  26. Lu, S.G., Rožič, B., Zhang, Q.M., Kutnjak, Z., Neese, B.: Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett. 98(12), 122906 (2011). doi:10.1063/1.3569953

    Article  Google Scholar 

  27. Mane, P., Xie, J., Leang, K.K., Mossi, K.: Cyclic energy harvesting from pyroelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(1), 10–17 (2011). doi:10.1109/TUFFC.2011.1769

    Article  Google Scholar 

  28. Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D.: Giant electrocaloric effect. Science 311(5765), 1209d–1209d (2006). doi:10.1126/science.311.5765.1209d

    Article  Google Scholar 

  29. Mischenko, A.S., Zhang, Q., Whatmore, R.W., Scott, J.F., Mathur, N.D.: Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg[sub 1/3]Nb[sub 2/3]O[sub 3]–0.1 PbTiO[sub 3] near room temperature. Appl. Phys. Lett. 89(24), 242912 (2006). doi:10.1063/1.2405889

    Article  Google Scholar 

  30. Navid, A., Pilon, L.: Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct. 20(2), 025012 (2011). doi:10.1088/0964-1726/20/2/025012

    Article  Google Scholar 

  31. Navid, A., Lynch, C.S., Pilon, L.: Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater. Struct. 19(5), 055006 (2010). doi:10.1088/0964-1726/19/5/055006

    Article  Google Scholar 

  32. Navid, A., Vanderpool, D., Bah, A., Pilon, L.: Towards optimization of a pyroelectric energy converter for harvesting waste heat. Int. J. Heat Mass Transf. 53(19–20), 4060–4070 (2010). doi:10.1016/j.ijheatmasstransfer.2010.05.025

    Article  CAS  Google Scholar 

  33. Ng, W. Y., Ploss, B., Chan, H. L. W., Shin, F. G., & Choy, C. L. (n.d.). Pyroelectric properties of PZT/P(VDF-TrFE) 0-3 composites. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076) (Vol. 2, pp. 767–770). IEEE. doi:10.1109/ISAF.2000.942432

  34. Nguyen, H., Navid, A., Pilon, L.: Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl. Therm. Eng. 30(14–15), 2127–2137 (2010). doi:10.1016/j.applthermaleng.2010.05.022

    Article  CAS  Google Scholar 

  35. Olsen, R.B., Brown, D.D.: High efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40(1), 17–27 (1982). doi:10.1080/00150198208210592

    Article  CAS  Google Scholar 

  36. Olsen, R.B., Evans, D.: Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material. J. Appl. Phys. 54(10), 5941 (1983). doi:10.1063/1.331769

    Article  CAS  Google Scholar 

  37. Olsen, R.B., Bruno, D.A., Briscoe, J.M.: Pyroelectric conversion cycles. J. Appl. Phys. 58(12), 4709 (1985). doi:10.1063/1.336244

    Article  CAS  Google Scholar 

  38. Olsen, R.B., Bruno, D.A., Briscoe, J.M., Jacobs, E.W.: Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer. J. Appl. Phys. 57(11), 5036 (1985). doi:10.1063/1.335280

    Article  CAS  Google Scholar 

  39. Olsen, R.B., Bruno, D.A., Briscoe, J.M., Jacobs, E.W.: High electric field resistivity and pyroelectric properties of vinylidene fluoride-trifluoroethylene copolymer. J. Appl. Phys. 58(8), 2854 (1985). doi:10.1063/1.335857

    Article  CAS  Google Scholar 

  40. Peláiz Barranco, A., Calderón Piñar, F., & Pérez Martínez, O. (2001). PLZT Ferroelectric Ceramics on the Morphotropic Boundary Phase. Study as Possible Pyroelectric Sensors. Physica status solidi (a), 186(3), 479–485. doi:10.1002/1521-396X(200108)186:3<479::AID-PSSA479>3.3.CO;2-D

  41. Pruvost, S., Hajjaji, A., Lebrun, L., Guyomar, D., Boughaleb, Y.: Domain switching and energy harvesting capabilities in ferroelectric materials†. J. Phys. Chem. C 114(48), 20629–20635 (2010). doi:10.1021/jp105262h

    Article  CAS  Google Scholar 

  42. Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., et al.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005). doi:10.1109/MPRV.2005.14

    Article  Google Scholar 

  43. Sebald, G., Seveyrat, L., Guyomar, D., Lebrun, L., Guiffard, B., Pruvost, S.: Electrocaloric and pyroelectric properties of 0.75Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3]–0.25PbTiO[sub 3] single crystals. J. Appl. Phys. 100(12), 124112 (2006). doi:10.1063/1.2407271

    Article  Google Scholar 

  44. Sebald, G., Lefeuvre, E., Guyomar, D.: Pyroelectric energy conversion: optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(3), 538–551 (2008). doi:10.1109/TUFFC.2008.680

    Article  Google Scholar 

  45. Sebald, G., Pruvost, S., Guyomar, D.: Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17(1), 015012 (2008). doi:10.1088/0964-1726/17/01/015012

    Article  Google Scholar 

  46. Sebald, G., Guyomar, D., Agbossou, A.: On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18(12), 125006 (2009). doi:10.1088/0964-1726/18/12/125006

    Article  Google Scholar 

  47. Shaobo, L., Yanqiu, L.: Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Mater. Sci. Eng., B 113(1), 46–49 (2004). doi:10.1016/j.mseb.2004.06.010

    Article  Google Scholar 

  48. Shebanov, L., Borman, K.: On lead-scandium tantalate solid solutions with high electrocaloric effect. Ferroelectrics 127(1), 143–148 (1992). doi:10.1080/00150199208223361

    Article  Google Scholar 

  49. Sklar, A. A. (2005). A Numerical Investigation of a Thermodielectric Power Generation System. Georgia Institute of Technology. Retrieved from http://hdl.handle.net/1853/14020

  50. Tuttle, B.A., Payne, D.A.: The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37(1), 603–606 (1981). doi:10.1080/00150198108223496

    Article  CAS  Google Scholar 

  51. Vanderpool, D., Yoon, J., Pilon, L.: Simulations of a prototypical device using pyroelectric materials for harvesting waste heat. Int. J. Heat Mass Transf. 51(21–22), 5052–5062 (2008). doi:10.1016/j.ijheatmasstransfer.2008.04.008

    Article  Google Scholar 

  52. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart dust: communicating with a cubic-millimeter computer. Computer 34(1), 44–51 (2001). doi:10.1109/2.895117

    Article  Google Scholar 

  53. Xie, J., Mane, X.P., Green, C.W., Mossi, K.M., Leang, K.K.: Performance of thin piezoelectric materials for pyroelectric energy harvesting. J. Intell. Mater. Syst. Struct. 21(3), 243–249 (2009). doi:10.1177/1045389X09352818

    Article  Google Scholar 

  54. Yamaka, E.: Structural, ferroelectric, and pyroelectric properties of highly c-axis oriented Pb1−xCaxTiO3 thin film grown by radio-frequency magnetron sputtering. J. Vac. Sci. Technol. A: Vac. Surf. Films 6(5), 2921 (1988). doi:10.1116/1.575452

    Article  CAS  Google Scholar 

  55. Zhang, Q., Whatmore, R.W.: Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films. J. Appl. Phys. 94(8), 5228 (2003). doi:10.1063/1.1613370

    Article  CAS  Google Scholar 

  56. Zhu, H., Pruvost, S., Guyomar, D., Khodayari, A.: Thermal energy harvesting from Pb(Zn[sub 1/3]Nb[sub 2/3])[sub 0.955]Ti[sub 0.045]O[sub 3] single crystals phase transitions. J Appl. Phys. 106(12), 124102 (2009). doi:10.1063/1.3271144

    Article  Google Scholar 

  57. Zhu, H., Pruvost, S., Cottinet, P.J., Guyomar, D.: Energy harvesting by nonlinear capacitance variation for a relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl. Phys. Lett. 98(22), 222901 (2011). doi:10.1063/1.3595325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Sebald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sebald, G., Pruvost, S., Guyomar, D. (2014). Energy Harvesting from Temperature: Use of Pyroelectric and Electrocaloric Properties. In: Correia, T., Zhang, Q. (eds) Electrocaloric Materials. Engineering Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40264-7_9

Download citation

Publish with us

Policies and ethics