Skip to main content

Fully Automatic Segmentation of AP Pelvis X-rays via Random Forest Regression and Hierarchical Sparse Shape Composition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Abstract

Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y., Ee, X., Leow, W.-K., Howe, T.S.: Automatic extraction of femur contours from hip X-ray images. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 200–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Lindner, C., Thiagarajah, S., Wilkinson, J.M., Wallis, G.A., Cootes, T.F.: Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 353–360. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Gottschling, H., Roth, M., Schweikard, A., Burgkart, R.: Intraoperative, fluoroscopy-based planning for complex osteotomies of the proximal femur. IJMRCAS 1(3), 33–38 (2005)

    Article  Google Scholar 

  4. Baka, N., Kaptein, B.L., Bruijne, M., van Walsum, T., Giphart, J.E., Niessen, W.J., Lelieveldt, B.P.: 2D-3D shape reconstruction of the distal femur from stereo x-ray imaging using statistical shape model. Med. Image Anal. 15(6), 840–850 (2001)

    Article  Google Scholar 

  5. Dong, X., Zheng, G.: Automatic extraction of proximal femur contours from calibrated x-ray images using 3D statistical models: an in vitro study. IJMRCAS 5(2), 213–222 (2009)

    Article  Google Scholar 

  6. Cristinacce, D., Cootes, T.: Automatic feature localization with constrained local models. Pattern Recognition 41(19), 3054–3067 (2008)

    Article  MATH  Google Scholar 

  7. Zhou, S.K., Comaniciu, D.: Shape regression machine. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 13–25. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation of 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE T. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  9. Pauly, O., Glocker, B., Criminisi, A., Mateus, D., Möller, A.M., Nekolla, S., Navab, N.: Fast multiple organ detection and localization in whole-body MR Dixon sequences. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 239–247. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: MCV 2010, pp. 106–117 (1201)

    Google Scholar 

  11. Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: CVPR, pp. 1022–1029 (2009)

    Google Scholar 

  12. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Sparse shape composition: a new framework for shape prior modeling. In: CVPR (2011)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. I, pp. 886–893 (2005)

    Google Scholar 

  14. Chen, C., Yang, Y., Nie, F., Odobez, J.M.: 3D human pose recovery from image by efficient visual feature selection. CVIU 115(3), 290–299 (2011)

    Google Scholar 

  15. Cootes, T.F., Taylor, C.J.: Active shape models-‘smart snakes’. In: BMVC (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, C., Zheng, G. (2013). Fully Automatic Segmentation of AP Pelvis X-rays via Random Forest Regression and Hierarchical Sparse Shape Composition. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics