Skip to main content

Complexity Fusion for Indexing Reeb Digraphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Abstract

In this paper we combine different quantifications of heat diffusion-thermodynamic depth on digraphs in order to match directed Reeb graphs for 3D shape recognition. Since different real valued functions can infer also different Reeb graphs for the same shape, we exploit a set of quasi-orthogonal representations for comparing sets of digraphs which encode the 3D shapes. In order to do so, we fuse complexities. Fused complexities come from computing the heat-flow thermodynamic depth approach for directed graphs, which has been recently proposed but not yet used for discrimination. In this regard, we do not rely on attributed graphs as usual for we want to explore the limits of pure topological information for structural pattern discrimination. Our experimental results show that: a) our approach is competitive with information-theoretic selection of spectral features and, b) it outperforms the discriminability of the von Neumann entropy embedded in a thermodynamic depth, and thus spectrally robust, approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE Tran. on Pattern Analysis and Mach. Intelligence 28(6), 954–967 (2006)

    Article  Google Scholar 

  2. Torsello, A., Lowe, D.L.: Supervised Learning of a Generative Model for Edge-Weighted Graphs. In: Proc. of ICPR (2008)

    Google Scholar 

  3. Passerini, F., Severini, S.: The von Neumann Entropy of Networks. arXiv:0812.2597v1 (December 2008)

    Google Scholar 

  4. Han, L., Escolano, F., Hancock, E.R., Wilson, R.: Graph Characterizations From Von Neumann Entropy. Pattern Recognition Letters (2012) (in press)

    Google Scholar 

  5. Lloyd, S., Pagels, H.: Complexity as Thermodynamic Depth Ann. Phys. 188, 186 (1988)

    MathSciNet  Google Scholar 

  6. Escolano, F., Hancock, E.R., Lozano, M.A.: Heat Diffusion: Thermodynamic Depth Complexity of Networks. Phys. Rev. E 85, 036206 (2012)

    Article  Google Scholar 

  7. Escolano, F., Bonev, B., Hancock, E.R.: Heat Flow-Thermodynamic Depth Complexity in Directed Networks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 190–198. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Bonev, B., Escolano, F., Giorgi, D., Biasotti, S.: Information-theoretic Selection of High-dimensional Spectral Features for Structural Recognition. Computer Vision and Image Understanding 117(3), 214–228 (2013)

    Article  Google Scholar 

  9. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 222, 847–849 (1946)

    MathSciNet  MATH  Google Scholar 

  10. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theoretical Computer Science 392(1-3), 5–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biasotti, S.: Topological coding of surfaces with boundary using Reeb graphs. Computer Graphics and Geometry 7(3), 31–45 (2005)

    Google Scholar 

  12. Biasotti, S.: Computational Topology Methods for Shape Modelling Applications. PhD Thesis, Universitá degli Studi di Genova (May 2004)

    Google Scholar 

  13. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 1–87 (2008)

    Article  Google Scholar 

  14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In: Proc. of SIGGRAPH 2001, pp. 203–212 (2001)

    Google Scholar 

  15. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace Operator for Meshed Surfaces. In: Proc. Symposium on Computational Geometry, pp. 278–287 (2008)

    Google Scholar 

  16. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient Computation of Isometry-Invariant Distances Between Surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung, F.: Laplacians and the Cheeger Inequailty for Directed Graphs. Annals of Combinatorics 9, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bring Order to the Web (Technical Report). Stanford University (1998)

    Google Scholar 

  19. Johns, J., Mahadevan, S.: Constructing Basic Functions from Directed Graphs for Value Functions Approximation. In: Proc. of ICML (2007)

    Google Scholar 

  20. Zhou, D., Huang, J., Schölkopf, B.: Learning from Labeled and Unlabeled Data on a Directed Graph. In: Proc. of ICML (2005)

    Google Scholar 

  21. Nock, R., Nielsen, F.: Fitting the Smallest Enclosing Bregman Ball. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 649–656. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Tsang, I.W., Kocsor, A., Kwok, J.T.: Simple Core Vector Machines with Enclosing Balls. In: Proc. of ICLM (2007)

    Google Scholar 

  23. Giorgi, D., Biasotti, S., Paraboschi, L.: SHape Retrieval Contest: Watertight Models Track, http://watertight.ge.imati.cnr.it

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escolano, F., Hancock, E.R., Biasotti, S. (2013). Complexity Fusion for Indexing Reeb Digraphs. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics