Skip to main content

A Graph Embedding Method Using the Jensen-Shannon Divergence

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Abstract

Riesen and Bunke recently proposed a novel dissimilarity based approach for embedding graphs into a vector space. One drawback of their approach is the computational cost graph edit operations required to compute the dissimilarity for graphs. In this paper we explore whether the Jensen-Shannon divergence can be used as a means of computing a fast similarity measure between a pair of graphs. We commence by computing the Shannon entropy of a graph associated with a steady state random walk. We establish a family of prototype graphs by using an information theoretic approach to construct generative graph prototypes. With the required graph entropies and a family of prototype graphs to hand, the Jensen-Shannon divergence between a sample graph and a prototype graph can be computed. It is defined as the Jensen-Shannon between the pair of separate graphs and a composite structure formed by the pair of graphs. The required entropies of the graphs can be efficiently computed, the proposed graph embedding using the Jensen-Shannon divergence avoids the burdensome graph edit operation. We explore our approach on several graph datasets abstracted from computer vision and bioinformatics databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space Embedding. World Scientific Press (2010)

    Google Scholar 

  2. Pekalska, E., Duin, R.P.W., Paclík, P.: Prototype Selection for Dissimilarity-based Classifiers. Pattern Recognition 39, 189–208 (2006)

    Google Scholar 

  3. Martins, A.F., Smith, N.A., Xing, E.P., Aguiar, P.M., Figueiredo, M.A.: Nonextensive Information Theoretic Kernels on Measures. Journal of Machine Learning Research 10, 935–975 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bai, L., Hancock, E.R.: Graph Kernels from The Jensen-Shannon Divergence. Journal of Mathematical Imaging and Vision (to appear)

    Google Scholar 

  5. Han, L., Hancock, E.R., Wilson, R.C.: An Information Theoretic Approach to Learning Generative Graph Prototypes. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 133–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Gadouleau, M., Riis, S.: Graph-theoretical Constructions for Graph Entropy and Network Coding Based Communications. IEEE Transactions on Information Theory 57, 6703–6717 (2011)

    Article  MathSciNet  Google Scholar 

  7. Köner, J.: Coding of An Information Source Having Ambiguous Alphabet and The Entropy of Graphs. In: Proceedings of the 6th Prague Conference on Information Theory, Statistical Decision Function, Random Processes, pp. 411–425 (1971)

    Google Scholar 

  8. Luo, B., Hancock, E.R.: Structural Graph Matching Using the EM Alogrithm and Singular Value Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1120–1136 (2001)

    Article  Google Scholar 

  9. Rissanen, J.: Stochastic Complexity in Statistical Inquiry. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  10. Rissanen, J.: Modelling by Shortest Data Description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  11. Rissanen, J.: An Universal Prior for Integers and Estimation by Minimum Description Length. Annals of Statistics 11, 417–431 (1983)

    Article  MathSciNet  Google Scholar 

  12. Han, L., Hancock, E.R., Wilson, R.C.: Characterizing Graphs Using Approximate von Neumann Entropy. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 484–491. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Shervashidze, N., Borgwardt, K.M.: Fast Subtree Kernels on Graphs. In: NIPS, pp. 1660–1668 (2009)

    Google Scholar 

  14. Ren, P., Wilson, R.C., Hancock, E.R.: Graph Characterization via Ihara Coefficients. IEEE Transactions on Neural Networks 22, 233–245 (2011)

    Article  Google Scholar 

  15. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern Vectors from Algebraic Graph Theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1112–1124 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, L., Hancock, E.R., Han, L. (2013). A Graph Embedding Method Using the Jensen-Shannon Divergence. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics