Skip to main content

Electrodialysis Control Parameters

  • Chapter
  • First Online:
Electrodialysis and Water Reuse

Abstract

Electrical conductivity, pH and concentration of the electrolyte, electric current or applied potential, are the basic control parameters of an electrodialysis system. However, to ensure the technical feasibility and an efficient use of electrodialysis processes, it is essential to understand the electrochemical behavior of ion exchange membranes, its stability, conductivity and selectivity. It is also important to observe some specific conditions of electrochemical processes, such as the occurrence of concentration polarization and limiting current density. Therefore, the main objective of the present chapter is to give a brief summary of the different control parameters that are important to decide which membrane is the most appropriate and to establish the maximum current density that can be used for a given application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barragán VM, Bauzá CR (2002) Current-voltage curves for a cation-exchange membrane in methanol—water electrolyte solutions. J Colloid Interface Sci 247:138–148. doi:10.1006/jcis.2001.8065

    Article  Google Scholar 

  2. Belova EI, Lopatkova GY, Pismenskaya ND et al (2006) Effect of anion exchange membrane surface properties on mechanisms of overlimiting mass transfer. J Phys Chem B 110:13458–13469. doi:10.1021/jp062433f

    Article  CAS  Google Scholar 

  3. Chamoulaud G, Bélanger D (2005) Modification of ion exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves. J Colloid Interface Sci 281:179–187. doi:10.1016/j.jcis.2004.08.081

    Article  CAS  Google Scholar 

  4. Choi E-Y, Strathmann H, Park JM et al (2006) Characterization of non-uniformly charged ion exchange membranes prepared by plasma-induced graft polymerization. J Membr Sci 268:165–174. doi:10.1016/j.memsci.2005.06.052

    Article  CAS  Google Scholar 

  5. Choi J-H, Kim S-H, Moon S-H (2001) Heterogeneity of ion—exchange membranes: the effects of membranes heterogeneity on transport properties. J Colloid Interface Sci 241:120–126. doi:10.1006/jcis.2001.7710

    Article  CAS  Google Scholar 

  6. Choi Y-J, Kang M-S, Kim S-H et al (2003) Characterization of LPDE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerization. J Membr Sci 223:201–215. doi:10.1016/S0376-7388(03)00339-9

    Article  CAS  Google Scholar 

  7. Lide DR (1998) Handbook of chemistry and physics. CRC press, New York

    Google Scholar 

  8. Ibanez R, Stamatialis DF, Wessling M (2004) Role of membrane surface in concentration polarization at cation—exchange membranes. J Membr Sci 239:119–128. doi:10.1016/j.memsci.2003.12.032

    Article  CAS  Google Scholar 

  9. Jialin L, Yazhen Y, Changying Y et al (1998) Membrane catalytic deprotonation effects. J Membr Sci 147:247–256. doi:10.1016/S0376-7388(98)00126-4

    Article  Google Scholar 

  10. Kang M-S, Choi Y-J, Choi I-J et al (2003) Electrochemical characterization of sulfonated poly (arylene ether sulfone) (S-PES) cation exchange membranes. J Membr Sci 216:39–53. doi:10.1016/S0376-7388(03)00045-0

    Article  CAS  Google Scholar 

  11. Kang M-S, Choi Y-J, Lee H-J et al (2004) Effects of inorganic substances on water splitting in ion exchange membranes. Electrochemical characteristics of ion exchange membranes coated with iron hydroxide/oxide and silica sol. J Colloid Interface Sci 273:523–532. doi:10.1016/j.jcis.2004.01.050

    Article  CAS  Google Scholar 

  12. Koter S (2001) Transport number of counterions in ion—exchange membranes. Sep Purf Technol 22–23:643–654. doi:10.1016/S1383-5866(00)00160-X

    Article  Google Scholar 

  13. Krol JJ (1997) Monopolar and bipolar membranes: mass transporte limitations. PhD thesis, University of Twente, Print Partners Ipskamp, Enschede, The Netherlands, p 173

    Google Scholar 

  14. Krol JJ, Wessling M, Strathmann H (1999) Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J Membr Sci 162:155–164. doi:10.1016/S0376-7388(99)00134-9

    Article  CAS  Google Scholar 

  15. Krol JJ, Wessling M, Strathmann H (1999) Concentration polarization with monopolar ion—exchange membranes: current—voltage curves and water dissociation. J Membr Sci 162:145–154. doi:10.1016/S0376-7388(99)00133-7

    Article  CAS  Google Scholar 

  16. Lteif R, Dammak L, Larchet C et al (2001) Détermination du nombre de transport d’un contre-ion dans une membrane échangeuse d’ions en utilisant la méthode de la pile de concentration. Eur Polym J 37:627–639. doi:10.1016/S0014-3057(00)00163-4

    Article  CAS  Google Scholar 

  17. Marder L, Ortega-Navarro EM, Pérez-Herranz V et al (2006) Evaluation of transition metals transport properties through a cation exchange membrane by chronopotentiometry. J Membr Sci 284(1–2):267–275. doi:10.1016/j.memsci.2006.07.039

    Article  CAS  Google Scholar 

  18. Mishchuk NA (1998) Electro—osmosis of the second kind near the heterogeneous ion exchange membrane. Colloids Surf A 140(1–3):75–89. doi:10.1016/S0927-7757(98)00216-7

    Article  CAS  Google Scholar 

  19. Mishchuk NA (1998) Perspectives of the electrodialysis intensification. Desalination 117:283–296. doi:10.1016/S0011-9164(98)00120-9

    Article  CAS  Google Scholar 

  20. Mishchuk NA, Koopal LK, Gonzalez-Caballero F (2001) Iintensification of electrodialysis by applying a non—stationary electric field. Colloids Surf A 176(2–3):195–212. doi:10.1016/S0927-7757(00)00568-9

    Article  CAS  Google Scholar 

  21. Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion—exchange membranes and electromembranes processes. Adv Colloid Interface Sci 119(2–3):97–130. doi:10.1016/j.cis.2005.09.005

    Article  CAS  Google Scholar 

  22. Nagarale R, Shahi VK, Thampy SK et al (2004) Studies on electrochemical characterization of polycarbonate and polysulfone bases heterogeneous cation—exchange membranes. React Funct Polym 61:131–138

    Article  CAS  Google Scholar 

  23. Noble RD, Stern SA (1995) Membrane separations technology—principles and applications. Elsevier, Amsterdan

    Google Scholar 

  24. Park J-S, Choi J-H, Yeon K-H et al (2006) An approach to fouling characterization of an ion exchange membranes using current—voltage relation and electrical impedance spectroscopy. J Colloid Interface Sci 294(1):129–138. doi:10.1016/j.jcis.2005.07.016

    Article  CAS  Google Scholar 

  25. Pismenskaya N, Sistat P, Huguet P et al (2004) Chronopotenciometry applied to the study of ion transfer through anion exchange membranes. J Membr Sci 228(1):65–76. doi:10.1016/j.memsci.2003.09.012

    Article  Google Scholar 

  26. Ramachandraiah G, Ray P (1997) Electroassisted transport phenomenon of strong and weak electrolytes across ion exchange membranes: chronopotentiometric study on deactivation of anion exchange membranes by higher homologous monocarboxylates. J Phys Chem B 101:7892–7900. doi:10.1021/jp9701698

    Article  CAS  Google Scholar 

  27. Rubinstein I, Staude E, Kedem O (1998) Role of the membrane surface in concentration polarization at ion—exchange membrane. Desalination 69:101–114. doi:10.1016/0011-9164(88)80013-4

    Article  Google Scholar 

  28. Rubinstein I, Zaltzman B, Kederm O (1997) Electric fields in and around ion—exchange membranes. J Membr Sci 125(1):17–21. doi:10.1016/S0376-7388(96)00194-9

    Article  CAS  Google Scholar 

  29. Rubinstein I, Zaltzman B, Pretz J et al (2002) Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation—exchange electrodialysis membrane. Rus J Electrochem 38:853–863

    Article  Google Scholar 

  30. Shahi VK, Prakash R, Ramachandraiah G et al (1999) Solution—membrane equilibrium at metal—deposited cation exchange membranes: chronopotentiometry characterization of metal-modified membranes. J Colloid Interface Sci 216(1):179–184

    Article  CAS  Google Scholar 

  31. Shahi VK, Thampy SK, Rangarajan R (2002) Chronopotentiometric studies on dialytic properties of glycine across ion—exchange membranes. J Membr Sci 203(1–2):43–51. doi:10.1016/S0376-7388(01)00745-1

    Article  CAS  Google Scholar 

  32. Sistat P, Pourcelly G (1997) Chronopotentiometric response of an ion—exchange membrane in the underlimiting currente—range. Transport phenomena within the diffusion layers. J Membr Sci 123:121–131. doi:10.1016/S0376-7388(96)00210-4

    Article  CAS  Google Scholar 

  33. Taky M, Pourcelly G, Gavach C et al (1996) Chronopotentiometric response of a cation—exchange membrane in contact with chromium (III) solutions. Desalination 105(3):219–228. doi:10.1016/0011-9164(96)00079-3

    Article  CAS  Google Scholar 

  34. Taky M, Pourcelly G, Lebon F et al (1992) Polarization phenomena at the interfaces between an electrolyte solution and an ion—exchange membrane. Part 1: ion transfer with a cation exchange membrane. J Electroanal Chem 336(1–2):171–194. doi: 10.1016/0022-0728(92)80270-E

  35. Tanaka Y (2002) Water dissociation in ion—exchange membrane electrodialysis. J Membr Sci 203(1–2):227–244. doi:10.1016/S0376-7388(02)00011-X

    Article  Google Scholar 

  36. Tanaka Y (2003) Concentration polarization in ion—exchange membrane electrodialysis—the events arising in a flowing solution in a desalting cell. J Membr Sci 216(1–2):149–164. doi:10.1016/S0376-7388(03)00067-X

    Article  CAS  Google Scholar 

  37. Tourreuil V, Rossignol N, Bulvestre G et al (1998) Détermination de la séléctivite d’une membrane échangeuse d’ion: confrontation entre le flux de diffusion et le nombre de transport. Eur Polym J 34(10):1415–1421. doi:10.1016/S0014-3057(97)00288-7

    Article  CAS  Google Scholar 

  38. Volodina E, Pismenskaya N, Nikonenko V et al (2005) Ion transfer across ion—exchange membranes with homogeneous and heterogeneous surfaces. J Colloid Interface Sci 285(1):247–258. doi:10.1016/j.jcis.2004.11.017

    Article  CAS  Google Scholar 

  39. Vyas PV, Ray P, Adhikary SK et al (2003) Studies of the effect of variation of blend ratio on permselectivity and heterogeneity of ion exchange membranes. J Colloid Interface Sci 257(1):127–134. doi:10.1016/S0021-9797(02)00025-5

    Article  CAS  Google Scholar 

  40. Moore WJ (1972) Physical chemistry. Prentice Hall, New Jersey

    Google Scholar 

  41. Wilhelm FG, Van der Vegt NFA, Strathmann H et al (2002) Comparison of bipolar membranes by means of chronopotentiometry. J Membr Sci 199(1–2):177–190. doi:10.1016/S0376-7388(01)00696-2

    Article  CAS  Google Scholar 

  42. Wilhelm FG, Van der Vegt NFA, Wessling M et al (2001) Chronopotentiometry for the advanced current–voltage characterisation of bipolar membranes. J Electroanalyt Chem 502(1–6):152–166. doi:10.1016/S0022-0728(01)00348-5

    CAS  Google Scholar 

  43. Xu T (2005) Ion—exchange membranes: state of their development and perspective. J Membr Sci 263(1–2):1–29. doi:10.1016/j.memsci.2005.05.002

    Article  CAS  Google Scholar 

  44. Zabolotsky VI, Nikonenko VV, Pismenskaya ND (1996) On the role of gravitational convection in the transfer enhancement of slat ions in the course of dilute solution electrodialysis. J Membr Sci 119:171–181. doi: dx.doi.org/10.1016/0376-7388(96)00121-4

    Google Scholar 

  45. Zabolotsky VI, Nikonenko VV, Pismenskaya ND et al (1998) Coupled transport phenomena in overlimiting current electrodialysis. Sep Purif Technol 14(1–3):255–267. doi:10.1016/S1383-5866(98)00080-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Marder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marder, L., Pérez Herranz, V. (2014). Electrodialysis Control Parameters. In: Moura Bernardes, A., Siqueira Rodrigues, M., Zoppas Ferreira, J. (eds) Electrodialysis and Water Reuse. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40249-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40249-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40248-7

  • Online ISBN: 978-3-642-40249-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics