Skip to main content

General Aspects of Electrodialysis

  • Chapter
  • First Online:
Book cover Electrodialysis and Water Reuse

Abstract

This chapter focuses on the general aspects of electrodialysis, presenting a historical background of the process and the technical principles. The electrodialysis stack design is introduced by discussing membranes, spacers and electrodes. Problems associated to fouling and scaling are presented. The phenomena known as fouling and scaling, which occur in membranes, can be avoided by applying the electrodialysis reversal. The basic concepts of electrodialysis reversal are presented. The efficiency of water and wastewater treatment by electrodialysis is evaluated through the calculation of percentage extraction and current efficiency. The total costs in electrodialysis are the sum of fixed costs associated with the amortization of the plant capital costs and the plant’s operating costs, which are discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison RP (1991) Surface and wastewater desalination by electrodialysis reversal. In: American water works association membrane technology conference, Orlando, March 1991

    Google Scholar 

  2. Andrés LJ, Riera FA, Alvarez R et al (1994) Separation of strong acids by electrodialysis with membranes selective to monovalent ions. An approach to modelling the process. Can J Chem Eng 72:848–853. doi:10.1002/cjce.5450720511

    Article  Google Scholar 

  3. Applegate LE (1984) Membrane separation processes. Chem Eng 91(12):64–89

    CAS  Google Scholar 

  4. Asada K, Gerdes L, Kawahara T (1992) Electrodialysis of effluents from treatment of metallic surfaces. In: Proceedings of 79th AESF annual technological conference, Atlanta, June 1992

    Google Scholar 

  5. Audinos R (1983) Optimization of solution concentration by electrodialysis. Aplications to zinc sulfate solutions. Chem Eng Sci 38(3):431–439. doi:10.1016/0009-2509(83)80160-2

    Article  CAS  Google Scholar 

  6. Awwa Research Foundation (1996) Lyonnaise des eaux-Dumez (Firm), South Africa water research commission electrodialysis. Water treatment membrane processes. McGraw-Hill, New York

    Google Scholar 

  7. Ayala EB, Pourcelly G, Bazinet L (2006) Nature identification and morphology characterization of cation-exchange membrane fouling during conventional electrodialysis. J Colloid Interface Sci 300:663–672. doi:10.1016/j.jcis.2006.04.035

    Article  Google Scholar 

  8. Baker RW (2004) Ion exchange membrane processes- electrodialysis. Membrane technology and applications, 2nd edn. John Wiley & Sons, New York. doi: 10.1002/9781118359686.ch10

  9. Gavach C, Lebon F, Pourcelly G et al (1992) Polarization Phenomena at the interfaces between an electrolyte solution and ion exchange membrane. J Electroanal Chem 336(1–2):171–194. doi:10.1016/0022-0728(92)80270-E

    Google Scholar 

  10. Kariduraganavar MY, Kittur AA, Kulkarni SS (2012) Ion exchange membranes: preparation, properties, and applications. In: Inamuddin Dr., Luqman M (eds) Ion exchange technology I:theory and materials. Springer, pp 233–276. doi: 10.1007/978-94-007-1700-8

  11. Leitz FB, Accomazzo MA, McRae WA (1974) High temperature electrodialysis. Desalination 14:33–41. doi:10.1016/S0011-9164(00)80045-4

    Article  Google Scholar 

  12. Lindstrand V, Jonsson AS, Sundstrom G (2000) Organic fouling of electrodialysis membranes with and without applied voltage. Desalination 130:73–84. doi:10.1016/S0011-9164(00)00075-8

    Article  CAS  Google Scholar 

  13. Lindstrand V, Sundstrom G, Jonsson AS (2000) Fouling of electrodialysis membranes by organic substances. Desalination 128:91–102. doi:10.1016/S0011-9164(00)00026-6

    Article  CAS  Google Scholar 

  14. Rautenbach R, Albrecht R (1989) Electrodialysis. In: Membrane processes. John Wiley & Sons, Aarau, pp 333–362

    Google Scholar 

  15. Scott K (1997) Handbook of industrial membranes, 1st edn. Elsevier Advanced Technology, Oxford, p 912

    Google Scholar 

  16. Strathmann H (1991) Electrodialysis state of the art, membranesproceedings of India-EC workshop. Oxford & IBH, New Delhi, pp 25–69

    Google Scholar 

  17. Strathmann H (1994) Electrodialytic membrane processes and their practical application. In: Sequeira CAC (ed) Studies in environmental science—environmental oriented electrochemistry, vol 59. Elsevier pp 495–533. doi: 10.1016/S0166-1116(08)70563-6

  18. Strathmann H (1995) Electrodialysis and related processes. In: Noble RD, Stern SA (eds) Membrane separations technology: principles and applications. Elsevier Science, pp 213–281. doi: 10.1016/S0927-5193(06)80008-2

  19. Strathmann H (2004) Ion exchange membrane separation processes, vol 9. Elsevier, Amsterdam, pp 1–348

    Google Scholar 

  20. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288. doi:10.1016/j.desal.2010.04.069

    Article  CAS  Google Scholar 

  21. Tanaka Y. (2007) Ion exchange membranes: fundamentals and applications, vol 12. Elsevier, Amsterdam, pp 1–531

    Google Scholar 

  22. Thampy SK, Narayanan PK, Chauhan DK et al (1995) Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis. Sep Sci Technol 30(19):3715–3722. doi:10.1080/01496399508014154

    Article  CAS  Google Scholar 

  23. Valero-Cervera F, Barceló A, Arbós-Sans R (2011) Electrodialysis technology: theory and applications. In: Schorr M (ed) Desalination, trends and technologies. InTech, pp 3–20. doi: 10.5772/14297. Available from: http://www.intechopen.com/books/desalination-trends-and-technologies/electrodialysis-technology-theory-and-applications. Accessed 05 Nov 2012

  24. Walsh FC, Pletcher D (1993) Industrial electrochemistry, 2nd edn. Chapman & Hall, London, pp 331–450

    Google Scholar 

  25. Wisniewska G, Winnicki T (1991) Electrodialytic desalination of effluents from zinc-coatings processes: removal of Zn\({\text{H}}^{+} \) and Cl ions from model solutions. In: Proceedings of the 12th international symposium on desalination and water reuse, Malta, 15–18 April 1991, pp163–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Moura Bernardes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moura Bernardes, A., Rodrigues, M.A.S., Ferreira, J.Z. (2014). General Aspects of Electrodialysis. In: Moura Bernardes, A., Siqueira Rodrigues, M., Zoppas Ferreira, J. (eds) Electrodialysis and Water Reuse. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40249-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40249-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40248-7

  • Online ISBN: 978-3-642-40249-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics