Skip to main content

3D Mesh Decomposition Using Protrusion and Boundary Part Detection

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

  • 4292 Accesses

Abstract

The number of 3D models is growing every day and the segmentation of such models has recently attracted a lot of attention. In this paper we propose a two-phase approach for segmentation of 3D models. We leverage a well-known fact from electrical physics about charge distribution for both initial protruding part extraction and boundary detection. The first phase tries to locate the initial protruding parts, which have higher charge density, while the second phase utilizes the minima rule and an area-based approach to find the boundary in the concave regions. The proposed approach has a great advantage over the similar approach proposed by Wu and Levine [1]; our approach can find boundaries for some joining parts not entirely located in the concave region which is not the case in the work of Wu and Levine. The experimental result on the McGill and SHREC 2007 datasets show promising results for partial matching in 3D model retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, K., Levine, M.: 3D part segmentation using simulated electrical charge distribu-tions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11), 1223–1235 (1997)

    Article  Google Scholar 

  2. Alizadeh, F., Sutherland, A.: A Robust 3D Shape Descriptor Based on the Electrical Charge Distribution. In: Proc. Intl. Conf. on computer vision theory and application, VISAPP 2013, Barcelona, pp. 213–218 (2013)

    Google Scholar 

  3. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic tex-ture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  4. Lior, S., Shalom, S., Shamir, A., Cohen-or, D., Zhang, H.: Contextual part analogies in 3D objects. International Journal of Computer Vision 89(2), 309–326 (2010)

    Google Scholar 

  5. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, S.: Protrusion-oriented 3D mesh segmen-tation. The Visual Computer 26(1), 63–81 (2010)

    Article  Google Scholar 

  6. Guillemin, V., Pollack, A.: Differential topology. Printice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  7. Lior, S., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24(4), 249–259 (2008)

    Article  Google Scholar 

  8. Kim, D., Yun, I., Lee, S.: A new shape decomposition scheme for graph-based representa-tion. Pattern Recognition 38(5), 673–689 (2005)

    Article  Google Scholar 

  9. Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  10. Valette, S., Kompatsiaris, I., Strintzis, M.: A polygonal mesh partitioning algorithm based on protrusion conquest for perceptual 3D shape description. In: Workshop Towards Semantic Virtual Environments SVE, pp. 68–76 (2005)

    Google Scholar 

  11. Page, D., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. Conf. on Computer Vision and Pattern Rec., pp. 27–32 (2003)

    Google Scholar 

  12. Lin, H., Liao, H., Lin, J.: Visual salience-guided mesh decomposition. IEEE Transactions on Multimedia 9(1), 46–57 (2007)

    Article  Google Scholar 

  13. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH 2001, pp. 203–212 (2001)

    Google Scholar 

  14. Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1) (2003)

    Google Scholar 

  15. Sagi, K., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extrac-tion. The Visual Computer 21(8), 649–658 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alizadeh, F., Sutherland, A. (2013). 3D Mesh Decomposition Using Protrusion and Boundary Part Detection. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics