Skip to main content

Biochemical Components Used in Biosensor Assemblies

  • Chapter
  • First Online:
Biosensors: Essentials

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 84))

Abstract

Over the past years, biosensor research has revolutionized clinical diagnostics, especially in diabetes management, and has had a significant impact on laboratory research. As was shown in Chap. 1, this was due to the extremely high importance of biochemical components that determine both the interpretation of the signal and the possibility to specifically detect a variety of the species, including metabolites, drug residues, toxic hazards, proteins, etc. It should be mentioned that from the very beginning, the development of biosensors has been mainly concentrated in the groups of biologists and medical staff who are involved in the development of medical equipment or investigation of molecular backgrounds of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyoju O, Iwuoha EI, Smyth MR (1995) Kinetic characterization of the effects of organic solvents on the performance of a peroxidase-modified electrode in detecting peroxides, thiourea and ethylenethiourea. Electroanalysis 7:924–929

    CAS  Google Scholar 

  • Albareda-Sirvent M, Merkoçi A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens Actuators B 69:153–163

    CAS  Google Scholar 

  • Aldridge WN (1950) Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl-p-nitrophenyl thiophosphate (E605) and analogues. Biochem J 46:451–460

    CAS  Google Scholar 

  • Andreescu S, Barthelmebs L, Marty J-L (2002) Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal Chim Acta 464:171–180

    CAS  Google Scholar 

  • Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193–214

    CAS  Google Scholar 

  • Armitage B (2003) The impact of nucleic acid secondary structure on PNA hybridization. Drug Discov Tod 8:222–228

    CAS  Google Scholar 

  • Asav E, Yorganci E, Akyilmaz E (2009) An inhibition type amperometric biosensor based on tyrosinase enzyme for fluoride determination. Talanta 78:553–556

    CAS  Google Scholar 

  • Banerjee IA, Yu L, Matsui H (2003) Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. PNAS 100:14678–14682

    CAS  Google Scholar 

  • Baur J, Gondran C, Holzinger M, Defrancq E, Perrot H, Cosnier S (2010) Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly (pyrrole-nitrilotriacetic acid) film. Anal Chem 82:1066–1072

    CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry, 6th edn. WH Freeman and Co., New York

    Google Scholar 

  • Bertok T, Gemeiner P, Mikula M, Gemeiner P, Tkac J (2013) Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid. Microchim Acta 180:151–159

    CAS  Google Scholar 

  • Blažková M, Koets M, Rauch P, Amerongen AV (2009) Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. Eur Food Res Technol 229:867–874

    Google Scholar 

  • Bo H, Wang C, Gao Q, Qi H, Zhang C (2013) Selective, colorimetric assay of glucose in urine using G-quadruplex-based DNAzymes and 10-acetyl-3,7-dihydroxyphenoxazine. Talanta 108:131–135

    CAS  Google Scholar 

  • Bogdanovskaya VA, Fridman VA, Tarasevich MR, Scheller F (1994) Bioelectrocatalysis by immobilized peroxidase: the reaction mechanism and the possibility of electroanalytical detection of both inhibitors and activators of enzyme. Anal Lett 27:2823–2847

    CAS  Google Scholar 

  • Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens Bioelectron 26:3254–3259

    CAS  Google Scholar 

  • Brady JF (2006) Mathematical aspects of immunoassays. In: Van Emon LM (ed) Immunoassay and other bioanalytical techniques. CRC Press, Boca Raton

    Google Scholar 

  • Byfield MP, Abuknesha RA (1994) Biochemical aspects of biosensors. Biosens Bioelectron 9:373–400

    CAS  Google Scholar 

  • Campanella L, De Luca S, Favero G, Persi L, Tomassetti M (2001) Superoxide dismutase biosensors working in non-aqueous solvent. Fresen J Anal Chem 369:594–600

    CAS  Google Scholar 

  • Campanella L, Lelo D, Martini E, Tomassetti M (2007) Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase OPEE and application to natural waters. Anal Chim Acta 587:22–32

    CAS  Google Scholar 

  • Cao L (2006) Carrier-bond immobilized enzymes: principles, application and design. Wiley, New York

    Google Scholar 

  • Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensorapplications. Biosens Bioelectrons 17:1–12

    CAS  Google Scholar 

  • Cheng AKH, Ge B, Yu H-Z (2007) Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem 79:5158–5164

    CAS  Google Scholar 

  • Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14:443–456

    CAS  Google Scholar 

  • Cosnier S (2005) Affinity biosensors based on electropolymerized films. Electroanalysis 17:1701–1715

    CAS  Google Scholar 

  • Dai Z, Kawde AN, Xiang Y, La Belle JT, Gerlach J, Bhavandan VP, Joshi L, Wang J (2006) Nanoparticle based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019

    CAS  Google Scholar 

  • Dankwart A (2000) Immunochemical assays in pesticide analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, New York

    Google Scholar 

  • de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509

    Google Scholar 

  • Decher G, Schlenoff JB (eds) (2002) Multilayer thin films. Wiley, New Jersey

    Google Scholar 

  • Degefa TH, Hwang S, Kwon D, Park JH, Kwak J (2009) Aptamer-based electrochemical detection of protein using enzymatic silver deposition. Electrochim Acta 54:6788–6791

    CAS  Google Scholar 

  • Dimcheva N, Horozova E (2005) Horseradish peroxidase-based organic-phase enzyme electrode. Anal Bioanal Chem 382:1374–1379

    CAS  Google Scholar 

  • Doretti L, Ferrara D, Gattolin P, Lora S (1997) Amperometric biosensor with physically immobilized glucose oxidase on a PVA cryogel membrane. Talanta 44:859–866

    Google Scholar 

  • Dugas V, Depret G, Chevalier Y, Nesme X, Souteyrand E (2004) Immobilization of single-stranded DNA fragments to solid surfaces and their repeatable specific hybridization: covalent binding or adsorption? Sens Actuators B 101:112–121

    CAS  Google Scholar 

  • Dupont-Filliard A, Billon M, Livache T, Guillerez S (2004) Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Anal Chim Acta 515:271–277

    CAS  Google Scholar 

  • Ehrentreich-Förster E, Orgel D, Krause-Griep A, Cech B, Erdmann VA, Bier F, Scheller FW, Rimmele M (2008) Biosensor-based on-site explosives detection using aptamers as recognition elements. Anal Bioanal Chem 391:1793–1800

    Google Scholar 

  • Evtugyn GA, Hianik T (2011) Layer-by-layer polyelectrolyte assembles involving DNA as a platform for DNA sensors. Curr Anal Chem 7:8–34

    CAS  Google Scholar 

  • Evtugyn GA, Budnikov HC, Nikolskaya EB (1999) Biosensors for the determination of environmental inhibitors of enzymes. Russ Chem Rev 68:1041–1064

    CAS  Google Scholar 

  • Evtugyn G, Mingaleva A, Budnikov H, Stoikova E, Vinter V, Eremin S (2003) Affinity biosensors based on disposable screen-printed electrodes modified with DNA. Anal Chim Acta 479:125–134

    CAS  Google Scholar 

  • Evtugyn G, Younusov R, Ivanov A (2012) Nanomaterials in the cholinesterase biosensors for inhibitor determination. In: Nikolelis DP (ed) Portable chemical sensors: weapons against bioterrorism, NATO science for peace and security series a: chemistry and biology. Springer Science + Business Media B.V, pp 227–244

    Google Scholar 

  • Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    CAS  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    CAS  Google Scholar 

  • Feng K, Sun C, Kang Y, Chen J, Jiang J-H, Shen G-L, Yu R-Q (2008) Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Commun 10:531–535

    Google Scholar 

  • Ferapontova EE, Gothelf KV (2009) Optimization of the electrochemical RNA-aptamer based biosensor for theophylline by using a methylene blue redox label. Electroanalysis 21:1261–1266

    CAS  Google Scholar 

  • Gäberlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652–658

    Google Scholar 

  • Giacobini E (ed) (2000) Cholinesterase and cholinesterase inhibitiors. Martin Dunitz Ltd., London

    Google Scholar 

  • Girard-Egrot AP, Blum LJ (2007) Langmuir-blodgett technique for synthesis of biomimetic lipid membranes. In: Martin DK (ed) Nanobiotechnology of biomimetic membranes. Fundamental biomedical technologies, vol 1. Springer Science + Business-Media LLC, Berlin, pp 23–74

    Google Scholar 

  • Gold L, Ayers D, Bertino J et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5:e15004

    CAS  Google Scholar 

  • Gorityala BK, Lu Z, Leow ML, Ma J, Liu X-W (2012) Design of a “turn-off/turn-on” biosensor: understanding carbohydrate-lectin interactions for use in noncovalent drug delivery. J Am Chem Soc 134:15229–15232

    CAS  Google Scholar 

  • Han TS, Sasaki S, Yano K, Ikebukuro K, Kitayama A, Nagamune T, Karube I (2002) Flow injection microbial trichloroethylene sensor. Talanta 57:271–276

    CAS  Google Scholar 

  • Hansen LH, Sørensen SH (2000) Detection and quantification of tetracyclines by whole cell biosensors. FEMS Microbiol Lett 1906:273–278

    Google Scholar 

  • He Y, Tian Y, Chen Y, Mao C (2009) DNAzymes in DNA nanomachines and DNA analysis. In: Li Y, Lu Y (eds) Functional nucleic acids for analytical applications. SpringerScience + Business Media, Berlin, pp 377–388

    Google Scholar 

  • Hianik N, Ostatná V, Zajacová Z, Stoikova E, Evtugyn G (2005) Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg Med Chem Lett 15:291–295

    CAS  Google Scholar 

  • Hianik T, Porfireva A, Grman I, Evtugyn G (2008) Aptabodies—new type of artificial receptors for detection proteins. Protein Pept Lett 15:799–805

    CAS  Google Scholar 

  • Hipolito-Moreno A, Leo Gonzalez ME, Perez-Arribas LV, Polo-Dõez LM (1998) Non-aqueous flow-injection determination of atrazine by inhibition of immobilized tyrosinase. Anal Chim Acta 362:187–192

    CAS  Google Scholar 

  • Hnaien M, Lagarde F, Bausells J, Errachid A, Jaffrezic-Renault N (2011) A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal Bioanal Chem 400:1083–1092

    CAS  Google Scholar 

  • Ho H, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    CAS  Google Scholar 

  • Ho MYK, Rechnitz GA (1985) Potentiometric system for selective formate measurement and improvement of response characteristics by permeation of cells. Biotechnol Bioeng 27:1634–1639

    CAS  Google Scholar 

  • Hu Y, Zuo P, Ye B-C (2013) Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin. Biosens Bioelectron 43:79–83

    CAS  Google Scholar 

  • Huang C, Chen Y, Jin G (2011) A one-step immunoassay for carbohydrate antigen 19-9 by biosensor based on imaging ellipsometry. Ann Biomed Eng 39:185–192

    CAS  Google Scholar 

  • Ispas CR, Crivat G, Andreescu S (2012) Review: recent developments in enzyme-based biosensors for biomedical analysis. Anal Lett 45:168–186

    CAS  Google Scholar 

  • Jin X, Mei L, Song C, Liu L, Leng X, Sun H, Kong D, Levy RJ (2008) Immobilization of plasmid DNA on an anti-DNA antibody modified coronary stent for intravascular site-specific gene therapy. J Gene Med 10:421–429

    CAS  Google Scholar 

  • Kandimalla VB, Tripathi VS, Ju H (2008) Biosensors based on immobilization of biomolecules in sol-gel matrices. In: Zhang X, Ju H, Wang J (eds) Electrochemical sensors, biosensors and their biomedical applications. Elsevier Inc, Amsterdam

    Google Scholar 

  • Katayama Y, Ohuchi Y, Higashi H, Kudo Y, Maeda M (2000) The design of cyclic AMP recognizing oligopeptides and evaluation of its capability for cyclic AMP recognition using an electrochemical system. Anal Chem 72:4671–4674

    CAS  Google Scholar 

  • Keleti T (1986) Basic enzyme kinetics. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Khlupova M, Kuznetsov B, Demkiv O, Gonchar M, Csöregi E, Shleev S (2007) Intact and permeabilized cells of the yeast Hansenula polymorpha as bioselective elements for amperometric assay of formaldehyde. Talanta 71:934–940

    CAS  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Polonica 48:199–208

    CAS  Google Scholar 

  • Kurata H, Miyagishi M, Kuwabara T, Warashina M, Taira K (2000) MAXIZYMEs: allosterically controllable ribozymes with biosensor functions. J Biochem Mol Biol 33:359–365

    CAS  Google Scholar 

  • Kurganov BI, Lobanov AV, Borisov IA, Reshetilov AN (2001) Criterion for Hill equation for description of biosensor calibration curves. Anal Chim Acta 427:11–19

    CAS  Google Scholar 

  • Law B (ed) (1996) Immunoassay. A practical guide. Taylor & Francis Ltd., London

    Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200210

    Google Scholar 

  • Lhomme J, Constant JF, Demeunynck M (1999) Abasic DNA structure, reactivity, and recognition. Biopolymers 52:65–83

    CAS  Google Scholar 

  • Li X, Shen L, Zhang D, Qi H, Gao Q, Ma F, Zhang C (2008) Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosens Bioelectron 23:1624–1630

    CAS  Google Scholar 

  • Lim JH, Park J, Ahn JH, Jin HJ, Hong S, Park TH (2013) A peptide receptor-based bioelectronic nose for the real-time determination of sea food quality. Biosens Bioelectron 39:244–249

    CAS  Google Scholar 

  • Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136

    CAS  Google Scholar 

  • Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridization sensors. Biosens Bioelectron 19:515–530

    CAS  Google Scholar 

  • Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    CAS  Google Scholar 

  • Mandong G, Yanqing L, Hongxia G, Xiaoqin W, Lifang F (2007) Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry 70:245–249

    Google Scholar 

  • Mascini M (2008) Aptamers and their applications. Anal Bioanal Chem 390:987–988

    CAS  Google Scholar 

  • Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. Fresen J Anal Chem 369:15–22

    CAS  Google Scholar 

  • Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210

    CAS  Google Scholar 

  • Matsui H, MacCuspie R (2001) Metalloporphyrin nanotube fabrication using peptide nanotubes as templates. Nano Lett 1:671–675

    CAS  Google Scholar 

  • Medyantseva ÉP, Varlamova RM, Gimaletdinova DA, Fattakhova AN, Budnikov GK (2007) Estimation of several antidepressants using an amperometric biosensor based on immobilized monoamino oxidase. Pharm Chem J 41:341–344

    CAS  Google Scholar 

  • Migneault I, Dartiguenave D, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802

    CAS  Google Scholar 

  • Minkstimiene AK, Ramanaviciene A, Ramanavicius A (2009) Surface plasmon resonance biosensor for direct detection of antibodies against human growth hormone. Analyst 134:2051–2057

    Google Scholar 

  • Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M (2004) Development of biosensors with aptamers as element: the case of HIV-1 Tat protein. Biosens Bioelectron 20:1149–1156

    CAS  Google Scholar 

  • Monsur Ali M, Aguirre SD, Lazim H, Li Y (2011) Fluorogenic DNAzyme probes as bacterial indicators. Angew Chem Int Ed 50:3751–3754

    Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A (2006) Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Anal Chim Acta 568:217–221

    CAS  Google Scholar 

  • Noguer T, Marty J-L (1997) High sensitive bienzymic sensor for the detection of dithiocarbamic fungicides. Anal Chim Acta 347:63–70

    CAS  Google Scholar 

  • Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80:707–712

    CAS  Google Scholar 

  • Ogonczyk D, Tymecki L, Wyzkiewicz I, Koncki R, Glab S (2005) Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sens Actuators B106:450–454

    Google Scholar 

  • Pividori MI, Alegret S (2005) DNA Adsorption on carbonaceous materials. Top Curr Chem 260:1–36

    CAS  Google Scholar 

  • Plainkum P, Fuchs SM, Wiyakrutta S, Raines RT (2003) Creation of a zymogen. Nat Struct Biol 10:115–119

    CAS  Google Scholar 

  • Prakash R (2002) Electrochemistry of polyaniline: study of the pH effect and electrochromism. J Appl Polym Sci 83:378–385

    CAS  Google Scholar 

  • Radi A-E, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 3432–3434

    Google Scholar 

  • Radi A-E, Sánchez JLA, Baldrich A, O’Sullivan CK (2005) Reusable impedimetric aptasensor. Anal Chem 77:6320–6323

    CAS  Google Scholar 

  • Rahaie M, Kazemi SS (2010) Lectin-based biosensors: as powerful tools in bioanalytical applications. Biotechnology 9:428–443

    CAS  Google Scholar 

  • Rahman MM, Umar A, Sawada K (2009) Development of self-assembled monolayers of single-walled carbon nanotubes assisted cysteamine on gold electrodes. Adv Sci Lett 2:28–34

    CAS  Google Scholar 

  • Rasmussen SK, Rasmussen LK, Weilguny D, Tolstrup AB (2007) Manufacture of recombinant polyclonal antibodies. Biotechnol Lett 9:845–852

    Google Scholar 

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    CAS  Google Scholar 

  • Rodríguez VC, Rivas GA (2009) Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–216

    Google Scholar 

  • Rodriguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19:1157–1167

    CAS  Google Scholar 

  • Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotechnol 18:252–256

    CAS  Google Scholar 

  • Safina G, van Lier M, Danielsson B (2008) Flow-injection assay of the pathogenic bacteria using lectin based quartz crystal microbalance. Talanta 77:468–472

    CAS  Google Scholar 

  • Satija J, Sai VVR, Mukherji S (2011) Dendrimers in biosensors: concept and applications. J Mater Chem 21:14367–14386

    CAS  Google Scholar 

  • Seabra AB, Durán N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54

    CAS  Google Scholar 

  • Sekretaryova AN, Vokhmyanina DV, Chulanova TO, Karyakina EE, Karyakin AA (2012) Reagentless biosensor based on glucose oxidase wired by the mediator freely diffusing in enzyme containing membrane. Anal Chem 84:1220–1223

    CAS  Google Scholar 

  • Shtilman MI (1993) Immobilization on polymers. VSP BV, Utrecht

    Google Scholar 

  • Singh RP, Oh B-K, Choi I-W (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochem 79:153–161

    CAS  Google Scholar 

  • Skládal P (1996) Biosensors based on cholinesterase for detection of pesticides. Food Technol Biotechnol 34:43–49

    Google Scholar 

  • Solna R, Sapelnikova S, Skladal P, Winther-Nielsen M, Carlsson C, Emneus J, Ruzgas T (2005) Multienzyme electrochemical array sensor for determination of phenols and pesticides. Talanta 65:349–357

    CAS  Google Scholar 

  • Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    CAS  Google Scholar 

  • Stocklein WFM, Warsinke A, Micheel B, Kempter G, Hohne W, Scheller FW (1998) Diphenilurea hapten sensing with monoclonal antibody and its Fab fragment: kinetic and thermodynamic investigation. Anal Chim Acta 362:101–111

    CAS  Google Scholar 

  • Subrahmanyam S, Kodandapani N, Shanmugam K, Moovarkumuthalvan K, Jeyakumar D, Subramanian TV (2001) Development of a sensor for acetic acid based on Fusarium solani. Electroanalysis 13:1275–1278

    CAS  Google Scholar 

  • Suprun E, Shumyantseva V, Rakhmetova S, Voronina S, Radko S, Bodoev N, Archakov A (2010) Label-free electrochemical thrombin aptasensor based on Ag nanoparticles modified electrode. Electroanalysis 22:1386–1392

    CAS  Google Scholar 

  • Timur S, Pazarlioğlu N, Pilloton R, Telefoncu A (2003) Detection of phenolic compounds by thick film sensors based on Pseudomonas putida. Talanta 61:87–93

    CAS  Google Scholar 

  • Tkac J, Vostiar I, Gemeiner P, Sturdik E (2002) Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochem 56:127–129

    CAS  Google Scholar 

  • Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron 18:1125–1134

    CAS  Google Scholar 

  • Tkác J, Svitel J, Curilla O (1998) Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnol Appl Biochem 27:153–158

    Google Scholar 

  • Tothill IE (2010) Peptides as molecular receptors. In: Zourob M (ed) Recognition Receptors in Biosensors. SpringerScience + Business Media LLC, Berlin, pp 249–274

    Google Scholar 

  • Tothill IE (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4:361–374

    CAS  Google Scholar 

  • Traut TW (2008) Allosteric regulatory enzymes. Springer, Berlin, 250 pp

    Google Scholar 

  • Tucker WO, Shum KT, Tanner A (2012) G-quadruplex DNA aptamers and their ligands: structure, function and application. Curr Pharm Design 18:2014–2026

    CAS  Google Scholar 

  • Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Google Scholar 

  • Volotovsky V, Kim N (1998) Cyanide determination by an ISFET based peroxidase biosensor. Biosens Bioelectron 13:1029–1033

    CAS  Google Scholar 

  • Wang J (1998) DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosens Bioelectron 13:757–762

    CAS  Google Scholar 

  • Westermeier R (2005) Electrophoresis in practice, 4th edn. Wiley, New York

    Google Scholar 

  • Wild D (ed) (2005) The immunoassay handbook, 3rd edn. Elsevier, Oxford

    Google Scholar 

  • Xia N, Deng D, Zhang L, Yuan B, Jing M, Du J, Liu L (2013) Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosens Bioelectron 43:155–159

    CAS  Google Scholar 

  • Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode bound DNAzyme assembly. J Am Chem Soc 129:262–263

    CAS  Google Scholar 

  • Xu X, Ying Y (2011) Microbial biosensors for environmental monitoring and food analysis. Food Rev Intern 27:300–329

    Google Scholar 

  • Yan L, Luo C, Cheng W, Mao W, Zhang D, Ding S (2012) A simple and sensitive electrochemical aptasensor for determination of chloramphenicol in honey based on target-induced strand release. J Electroanal Chem 687:89–94

    CAS  Google Scholar 

  • Yang W, Niu Y, Su C (2004) Multilayered construction of glucose oxidase and poly(allylamine)ferrocene on gold electrodes by means of layer-by-layer covalent attachment. Sens Actuators B 101:387–393

    Google Scholar 

  • Yang Y, Wang Z, Yang M, Guo M, Wu Z, Shen G, Yu R (2006) Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens Actuators B114:1–8

    Google Scholar 

  • Yuan Y, Gou X, Yuan R, Chai Y, Zhuo Y, Mao L, Gan X, Yuan Y, Gou X, Yuan R, Chai Y, Zhuo Y, Mao L, Gan X (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240

    CAS  Google Scholar 

  • Zaborcky O (1974) The immobilization of glucose oxidase via activation of its carbohydrate residues. Bioche Biophys Commun 61:210–216

    Google Scholar 

  • Zagorovsky K, Chan WCW (2013) A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew Chem Int Ed 52:3168–3171

    CAS  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. PNAS 82:3192–3196

    CAS  Google Scholar 

  • Zeng X, Shen Z, Mernaugh R (2012) Recombinant antibodies and their use in biosensors. Anal Bioanal Chem 402:3027–3038

    CAS  Google Scholar 

  • Zhang Y, Zhang K, Ma H (2009) Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl)acrylic acid)/carbon nanotubes modified electrode. Anal Biochem 387:13–19

    CAS  Google Scholar 

  • Zhang H, Jiang B, Xiang Y, Zhang Y, Chai Y, Yuan R (2011a) Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Anal Chim Acta 688:99–103

    CAS  Google Scholar 

  • Zhang X-B, Kong R-M, Lu Y (2011b) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    CAS  Google Scholar 

  • Zhu X, Zhang Y, Yang W, Liu Q, Lin Z, Qiu B, Chen G (2011) Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Anal Chim Acta 684:121–125

    CAS  Google Scholar 

  • Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer-cell-aptamer sandwich architecture. Anal Chim Acta 764:59–63

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Evtugyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evtugyn, G. (2014). Biochemical Components Used in Biosensor Assemblies. In: Biosensors: Essentials. Lecture Notes in Chemistry, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40241-8_2

Download citation

Publish with us

Policies and ethics