Skip to main content

Introduction and Overview of History

  • Chapter
  • First Online:
Biosensors: Essentials

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 84))

Abstract

For a long time, people used to check a biological response toward toxic species. Masses of fish perishing in winter or the leaves turning yellow in summer were interpreted as signs of the potential danger for living beings caused by water or soil contaminants. In the nineteenth century, canaries were used in coal mining as early warning systems to prevent poisoning with carbon monoxide, methane and other noxious gases accumulated in the coal mines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa M, Morioka A, Matsuoka H, Suzuki S, Nagamura Y, Shino-Hara R, Ishiguro I (1976) An enzyme immunosensor for IgG. J Solid Phase Biochem 1:319–328

    CAS  Google Scholar 

  • Andreescu S, Bucur B, Marty J (2006) Affinity immobilization of tagged enzymes. In: Guisan JM (ed) Immobilization of enzymes and cells (Methods in Biotechnology). Humana Press Inc., Totowa, pp 97–107

    Chapter  Google Scholar 

  • Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19:2015–2028

    Article  CAS  Google Scholar 

  • Becker B, Cooper MA (2011) A survey of the 2006-2009 quartz crystal microbalance biosensor literature. I Mol Recognit 24:754–787

    Article  CAS  Google Scholar 

  • Bergveld P (1972) Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans Biomed Eng 19:342–351

    Article  CAS  Google Scholar 

  • Bergveld P (2003) Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators, B 88:1–20

    Article  CAS  Google Scholar 

  • Boni A, Cremisini C, Magaro E, Tosi M, Vastarella W, Pilloton R (2004) Optimised biosensors based on purified enzymes and engineered yeasts: detection of inhibitors of cholinesterases on grapes. Anal Lett 37:1683–1699

    Article  CAS  Google Scholar 

  • Byfield MP, Abuknesha RA (1994) Biochemical aspects of biosensors. Biosens Bioelectron 9:373–400

    Article  CAS  Google Scholar 

  • Campàs M, Prieto-Simón B, Marty J-L (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20:3–9

    Article  Google Scholar 

  • Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52:1935–1937

    Article  CAS  Google Scholar 

  • Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  CAS  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode system for continuous monitoring cardiovascular surgery. Am NY Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  • Cui Y, Barford JP, Renneberg R (2008) Amperometrictrienzyme ATP biosensors based on the coimmobilization of salicylate hydroxylase, glucose-6-phosphate dehydrogenase, and hexokinase. Sens Actuators, B 132:1–4

    Article  CAS  Google Scholar 

  • David C, Guillot N, Shen H, Toury T, de la Chapelle ML (2010) SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21:475501

    Article  Google Scholar 

  • Dzyadevych SV, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568:248–258

    Article  CAS  Google Scholar 

  • Famulok M, Mayer G (2011) Aptamer modules as sensors and detectors. Acc Chem Res 44:1349–1358

    Article  CAS  Google Scholar 

  • Giardi MT, Koblízek M, Masojídek J (2001) Photosystem II-based biosensors for the detection of pollutants. Biosens Bioelectron 16:1027–1033

    Article  CAS  Google Scholar 

  • Gopinath SCB (2010) Biosensing applications of surface plasmon resonance-based Biacore technology. Sens Actuators B 150:722–733

    Article  CAS  Google Scholar 

  • Guilbault GG (1983) Determination of formaldehyde with an enzyme coated piezoelectric crystal. Anal Chem 55:1682–1684

    Article  CAS  Google Scholar 

  • Guilbault GG, Montalvo J (1969) Urea specific enzyme electrode. J Am Chem Soc 91:2164–2165

    Article  CAS  Google Scholar 

  • Guilbault GG, Kramer DN, Cannon PL (1962) Electrochemical determination of organophosphorus compounds. Anal Chem 34:1437–1439

    Article  CAS  Google Scholar 

  • Guilbault GG, Pravda M, Kreuzer M, O’Sullivan CK (2004) Biosensors—42 years and counting. Anal Lett 37:1481–1496

    Article  CAS  Google Scholar 

  • Hartwell SK, Grudpan K (2010) Flow-based immune/bioassay and trends in micro immuno/biosensors. Microchim Acta 169:201–220

    Article  CAS  Google Scholar 

  • Hu T, Zhang X-E, Zhang Z-P (1999) Disposable screen-printed enzyme sensor for simultaneous determination of starch and glucose. Biotechnol Techn 13:359–362

    Article  CAS  Google Scholar 

  • Janata J (1975) An immunoelectrode. J Am Chem Soc 97:2914–2916

    Article  CAS  Google Scholar 

  • Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng 19:1535–1547

    Article  CAS  Google Scholar 

  • Kosman K, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: A review. Anal Chim Acta 707:7–17

    Article  CAS  Google Scholar 

  • Kukoba AV, Bykh AI, Svir IB (2000) Analytical applications of electrochemiluminescence: an overview. Fres J Anal Chem 368:439–442

    Article  CAS  Google Scholar 

  • Kwan RCH, Hon PYT, Mak KKW, Renneberg R (2004) Amperometric determination of lactate with novel trienzyme/poly(carbamoyl) sulfonate hydrogel-based sensor. Biosens Bioelectron 19:1745–1752

    Article  CAS  Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Li L (2010) Recent developments of micromachined biosensors. IEEE Sensors J 11:305–311

    Article  Google Scholar 

  • Liedberg B, Nylander C, Lundstrom I (1983) Development of an optical waveguide interferometric immunosensor. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  • Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  • Litos IK, Ioannou PC, Christopoulos TK, Traeger-Synodinos J, Kanavakis E (2009) Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms. Biosens Bioelectron 24:3135–3139

    Article  CAS  Google Scholar 

  • Liu L, Shang L, Liu C, Liu C, Zhang B, Dong S (2010) A new mediator method for BOD measurement under non-deaerated condition. Talanta 81:1170–1175

    Article  CAS  Google Scholar 

  • Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, Nuñez C (2010) Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 39:2948–2976

    Article  CAS  Google Scholar 

  • Marx KA (2007) The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. Springer Ser Chem Sens Biosens 5:371–424

    Article  CAS  Google Scholar 

  • Medyantseva EP, Khaldeeva EV, Budnikov GK (2001) Immunosensors in biology and medicine: analytical capabilities, problems, and prospects. J Anal Chem 56:886–900

    Article  CAS  Google Scholar 

  • Mikkelsen SR, Rechnitz GA (1989) Conductometric transducers for enzyme-based biosensors. Anal Chem 61:1737–1742

    Article  CAS  Google Scholar 

  • Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209

    CAS  Google Scholar 

  • Mosbach K, Danielsson B (1974) An enzyme thermistor. Biochim Biophys Acta 364:140–145

    Article  CAS  Google Scholar 

  • Muramatsu H, Kijiwara K, Tamiya E, Karube I (1986) Piezoelectric immuno sensor for the detection of Candida albicans microbes. Anal Chim Acta 188:257–261

    Article  Google Scholar 

  • Nagel B, Dellweg H, Gierasch LM (1992) Glossary for chemists of terms used in biotechnology. Pure Appl Chem 64:143–168

    Article  CAS  Google Scholar 

  • Onuki Y, Bhardway U, Pharm M, Papadimitrakopoulos F, Burgess DJ (2008) Review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2:1003–1015

    Google Scholar 

  • Palchetti I, Mascini M (2010) Biosensor technology: a brief history. In: Malcovati P et al (eds.) Sensors and microsystems: AISEM 2009 proceedings. Lecture notes in electrical engineering, vol 54, pp 15–23

    Google Scholar 

  • Pan J (2007) Voltammetric detection of DNA hybridization using a non-competitive enzyme linked assay. Biochem Eng J 36:183–190

    Article  CAS  Google Scholar 

  • Polak ME, Rawson DM, Haggett BGD (1996) Redox mediated biosensors incorporating cultured fish cells for toxicity assessment. Science 11:1253–1257

    CAS  Google Scholar 

  • Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47:1–11

    Article  CAS  Google Scholar 

  • Rasooly A, Jacobson J (2006) Development of biosensors for cancer clinical testing. Biosens Bioelectron 21:1851–1858

    Article  CAS  Google Scholar 

  • Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Bioluminescence in analytical chemistry and in vivo imaging. Trac Trends Anal Chem 28:307–322

    Article  CAS  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  • Sidwell JS, Rechnitz GA (1986) Progress and challenges for biosensors using plant tissue materials. Biosens 2:221–223

    Article  CAS  Google Scholar 

  • Šmuc T, Ahn I-Y, Ulrich H (2013) Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. J Pharm Biomed Anal 81–82:210–217

    Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Tamayo J, Kosaka PM, Ruz JJ, San Paulo Á, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311

    Article  CAS  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification (Technical Report). Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  • Tomita IN, Manzoli A, Fertonani FL, Yamanaka H (2005) Amperometric biosensor for ascorbic acid. Ecl Quím São Paulo 30:37–43

    Article  CAS  Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  CAS  Google Scholar 

  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  CAS  Google Scholar 

  • Voelkl KP, Opitz N, Lubbers DW (1980) Continuous measurement of concentrations of alcohol using a fluorescence-photometric enzymatic method. Fres Z Anal Chem 301:162–163

    Article  CAS  Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  • Wang J, Lin MS (1989) Horseradish-root-modified carbon paste bioelectrode. Electroanalysis 1:43–49

    Article  CAS  Google Scholar 

  • Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  • Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal Chem 76:3269–3284

    Article  CAS  Google Scholar 

  • Worsfold PG, Hughes A (1984) Analyst 109:339–341

    Google Scholar 

  • Yang M, McGovern ME, Thompson M (1997) Genosensor technology and the detention of interfacial nucleic acid chemistry. Anal Chim Acta 346:259–275

    CAS  Google Scholar 

  • Zhu L, Yang R, Zhai J, Tian C (2007) Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens Bioelectron 23:528–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Evtugyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evtugyn, G. (2014). Introduction and Overview of History. In: Biosensors: Essentials. Lecture Notes in Chemistry, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40241-8_1

Download citation

Publish with us

Policies and ethics